Что определяет третье квантовое число

Что определяет третье квантовое число

Орбитальное квантовое число `l` показывает, сколько энергетических подуровней составляют данный уровень и характеризует форму орбиталей. Принимает значения от `0` до `(n-1)`.

При `n=3`, `l` принимает уже три значения: `0` `(s)`; `1` `(p)` и `2` `(d)`. Таким образом, на третьем уровне три подуровня. Орбитали `d`-подуровня имеют форму двух перекрещённых объёмных восьмёрок либо объёмной восьмерки с перемычкой (рис. 1).

При `n=4`, значений `l` уже четыре, следовательно, и подуровней на четвёртом уровне четыре. К перечисленным выше добавляется `3` `(f)`. Орбитали `f`-подуровня имеют более сложную, объёмную, форму.

Что определяет третье квантовое число

Магнитное квантовое число `ml` определяет число орбиталей на каждом подуровне и характеризует их взаимное расположение.

Принимает значения `-l` до `+l`, включая `0`.

При `l=1`, `m_l` принимает три значения: `−1`; `0`; `+1`. Значит, орбиталей на данном подуровне (`p`-подуровне) три. Так как `p`-орбитали представляют из себя объёмные восьмёрки (то есть линейной структуры), располагаются они в пространстве по осям координат, перпендикулярно друг другу (`p_x`, `p_y`, `p_z`).

При `l=2`, `m_l` принимает уже пять значений: `−2`; `−1`; `0`; `+1`; `+2`. То есть на `d`-подуровне располагаются пять орбиталей. Это плоскостные структуры, в пространстве занимают пять положений.

Спиновое квантовое число `m_s` характеризует собственный момент количества движения электрона и принимает только два значения: `+1//2` и `-1//2`.

Всё вышесказанное можно обобщить в Таблице 2.

Таблица 2. Квантовые числа, атомные орбитали и число электронов на подуровнях (для `n

Источник

Квантовые числа электронов.

Квантовые числа – энергетические параметры, определяющие состояние электрона и тип атомной орбитали, на которой он находится.

1. Главное квантовое число n характеризует общую энергию электрона и размер орбитали. Оно принимает целочисленные значения от 1: n = 1, 2, 3, 4, 5, 6, 7.

2. Орбитальное (побочное) квантовое число l характеризует форму атомной орбитали и принимает значения от 0 до n-1: 0, 1, 2, 3, …, n-1.

Электрон, обладая свойствами частицы и волны, движется вокруг ядра, образуя электронное облако, форма которого в s-, р-, d-, f-, g-состояниях различна.

Если l=0 (s-орбиталь), то электронное облако имеет сферическую форму и не обладает направленностью в пространстве.

Если l=1 (p-орбиталь) то электронное облако имеет форму гантели.

d- и f-орбитали имеют более сложную форму.

Что определяет третье квантовое число

3. Магнитное квантовое число m характеризует количество орбиталей одинаковой формы и их ориентацию относительно внешнего электрического или магнитного поля. Квантовое число m принимает целочисленные значения в интервале l, … –1, 0, +1,+l. Для каждого значения разрешено 2l+1 значений числа m. Например, если l=1, то m имеет 2×1+1, т.е. 3 значения: –1, 0, +1.

4. Спиновое квантовое число s характеризует вращение электрона вокруг своей оси и принимает только 2 значения: +1/2 (↑) и –1/2 (↓).

Источник

Что определяет третье квантовое число

Что определяет третье квантовое число

В квантовой механике доказывается, что уравнению Шредингера удовлетворяют собственные функции Что определяет третье квантовое число, определяемые набором трёх квантовых чисел: главного n, орбитального l и магнитного m.

Главное квантовое числоn характеризует расстояние электрона от ядра – радиус орбиты.

Согласно (7.1.4) n определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения, начиная с единицы.

В атомной физике состояния электрона, соответствующие главному квантовому числу n, (n = 1, 2, 3, 4,…) принято обозначать буквами K, L, M, N,….

Что определяет третье квантовое число

Два типа орбиталей s (она одна), p (их три), по которым «размазан» электронный заряд, показаны на рис. 7.4.

Что определяет третье квантовое число

Орбитали часто называют подоболочками оболочек, поскольку они характеризуют формы разных орбит, на которых можно обнаружить электроны, находящиеся в одной оболочке (при заданном квантовом числе n).

Решая последовательно задачу об электроне в прямоугольной потенциальной яме, мы доказали, что энергия и положение электрона квантуются, т.е. принимают дискретные значения.

Решая уравнения Шредингера для атома, можно получить выражения для энергии, момента импульса и других динамических переменных электрона без привлечения каких-либо постулатов.

Рассмотрим (без вывода) движение электрона в потенциальном поле Что определяет третье квантовое число.

Обратимся вновь к стационарному уравнению Шредингера:

Так как электрическое поле – центрально-симметрично, то для решения этого уравнения воспользуемся сферической системой с координатами (r, θ, φ), которые связаны с декартовыми координатами, как это следует из рис. 7.5, соотношениями:

Что определяет третье квантовое число;

Что определяет третье квантовое число;

Что определяет третье квантовое число.

Что определяет третье квантовое число

Подставим в (7.2.1) выражение оператора Лапласа в сферических координатах и получим уравнение Шредингера в следующем виде:

Уравнение (7.2.2) имеет решение при всех значениях полной энергии E > 0, что соответствует свободному электрону. При Е

Источник

Квантовые числа

Что определяет третье квантовое число Что определяет третье квантовое число Что определяет третье квантовое число Что определяет третье квантовое число

Что определяет третье квантовое число

Что определяет третье квантовое число

Квантово-механическое описание электрона в атоме

Теория Бора позволила точно вычислить частоты в спектрах атома водорода и других одноэлектронных систем, т. е. таких ионов, как гелий, литий, берилий.

Поэтому возникла необходимость создания более общей теории, которая получила название квантовой механики. Такая теория, описывала поведение объектов микромира (например, электрона).

В1923-1927 гг были сформулированы основные положения квантовой механики.

Квантово-механическая теория содержит два основных положения.

2. Положение электрона в атоме неопределенно. Это озна­чает, что невозможно одновременно точно определить и скорость электрона, и его координаты в пространстве.

Электрон, который движется с очень большой скоростью, может находиться в любой части пространства вокруг ядра, и различные моментальные его положения образуют так называе­мое электронное облако с неравномерной плотностью отрица­тельного заряда(рисунок). Форма и размеры электронного облака могут быть разными в зависимости от энергии электрона.

Для химической характеристики элемента, которая определяется состоянием электронов в электронной оболочке его атома, а также для объяснения связей, которые атом данного элемента может образовывать с другими атомами, необходимо знать:

энергию электрона в атоме (точнее, энергию системы, со­стоящей из этого электрона, других электронов и ядра;

— форму образуемого данным электроном электронного облака.

Состояние электрона в атоме характеризуется набором четырех квантовых чисел.

По энергии электроны в атоме распределяются по энергети­ческим уровням и подуровням.

Число возможных значений l соответствует числу возможных подуровней на данном уровне, равному номеру уровня (п).

При п = 1 l = 0 (1 значение)

п = 2 l = 0, 1 (2 значения)

п = 3 l = 0, 1, 2 (3 значения)

п = 4 l = 0, 1, 2, 3 (4 значения)

Таблица 1.1 – Форма электронных облаков

Главное квантовое число (n)Возможные значения орбитального квантового числа (l)Форма электронного облакаБуквенное обозначение
s
s
p
s
p
d

4.2.3 Магнитное квантовое число(ml) характеризует ориента­цию электронного облака в магнитном поле; принимает цело­численные значения от – l до +l:

При l = 0 (s-электрон) ml может принимать только одно значение (для сферического электронного облака возможна только одна ориентация в пространстве).

При l = 1 (р-электрон) т1 может принимать 3 значения (возможны три ориентации электронного облака в пространстве).

При l = 2 (d-электрон) возможны 5 значений ml; (разные ориентации в пространстве при несколько изменяющейся фор­ме электронного облака).

При l = 3 (f-электрон) возможны 7 значений ml (ориентация и форма электронных облаков не сильно отличается от той, что наблюдается у d-электронов).

Что определяет третье квантовое число

Электроны, имеющие одинаковые значения п, l и ml, нахо­дятся на одной орбитали.

4.2.4 Спиновое квантовое числоs)

Электроны, имеющие одинаковые значения главного, орби­тального и магнитного квантовых чисел и отличающиеся толь­ко значениями спинового квантового числа, находятся на одной орбитали и образуют одно общее электронное облако. Такие два электрона, имеющие противоположные спины и находящиеся на одной орбитали, называют спаренными.Один электрон на орбитали является неспаренным.

Четыре квантовых числа n, l, ml, ms однозначно определяют состояние электрона в атоме.

Источник

Квантовые числа и их характеристика

Что определяет третье квантовое число Что определяет третье квантовое число Что определяет третье квантовое число Что определяет третье квантовое число

Что определяет третье квантовое число

Что определяет третье квантовое число

Первое квантовое число n называется главным квантовым числом, оно может принимать целые значения от 1 до бесконечности. В атоме водорода это число характеризует энергию электрона (в атомных единицах):

Второе квантовое число l называется орбитальным числом. При определенном значении n оно может принимать целые значения от 0 до (n-1). Число l определяет одно из возможных значений орбитального момента количества движения электрона в атоме. Число l определяет форму орбитали. Каждому значению l сопоставляют букву (спектроскопические обозначения):

При обозначении состояния электрона (или орбитали) главное квантовое число пишут перед символом орбитального квантового числа в виде формулы: nl. Например:

4s означает электрон, у которого n=4 и l=0, т.е. электронное облако имеет форму шара;

2p означает электрон, у которого n=2и l=1 (электронное облако имеет форму гантели) и т.д.

Третье квантовое числоml характеризует пространственне расположение орбиталей. Оно называется магнитным квантовым числом и определяет величину проекции орбитального момента количества движения на выделенное направление (обычно ось z). mlпринимает целые значения от –l до +l. Число различных значений ml при определенном значении l равно N=(2l+1).

s-cостоянию электрона отвечает одна орбиталь

p-cостоянию электрона отвечает три орбитали

d-cостоянию электрона отвечает пять орбиталей

f-cостоянию электрона отвечает семь орбиталей

Таким образом орбиталь характеризуется определенным набором трех квантовых чисел: n, l, m.

При исследовании свойств электрона возникла необходимость ввести четвертое квантовое число, которое было названо спиновым квантовым числом ms.

Спин электрона характеризует вращение электрона вокруг собственной оси. Это вращение может происходить по часовой стрелке, или против неё относительно орбиты электрона. В зависимости от этого ms может принимать одно из двух значениий:

Что определяет третье квантовое число

Спин электрона характеризует собственный вращательный момент электрона. В атоме водорода спиновый вращательный момент электрона добавляется к орбитальному моменту электрона.

Согласно принципу исключения Паули (швейцарский физик, 1925 год):никакие два электрона в атоме не могут иметь одинаковые наборы четырех квантовых чисел. Это значит, что если 2 электрона в атоме имеют одни и те же значения n, l и ml, то они должны иметь разные значения ms. Их спины должны быть направлены в разные стороны. На каждой орбитали могут максимально находится 2 электрона с противоположно направленными спинами.

Следствие из закона Паули: максимальное число электронов на уровне равно удвоенному значению квадрата главного квантового числа

Порядок заполнения орбиталей данного подслоя подчиняется правилу Хунда: Суммарное спиновое число электронов данного подслоя должно быть максимальным.

Иными словами, орбитали данного подслоя заполняется сначала по одному электрону, затем по второму электрону. Электроны с противоположными спинами на одной орбитали образуют двухэлектронное облако и их суммарный спин равен нулю.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *