Что определяет строение и структуру вселенной

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Определение в космологии и важные факты

Определением Вселенной в космологии будет область мира, за которой можно наблюдать. Именно в этом смысле синонимичным ей понятием является Метагалактика. За этим широким определением кроется множество секретов, ведь космические эксперименты начались очень давно, продолжаются до сих пор и нет никаких оснований предполагать, что завершатся в ближайшем будущем.

Во время научных изысканий было открыто несколько фактов о Вселенной, которые подтверждены с высокой долей вероятности.

Среди них:

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Происхождение и эволюция

Расширение космического пространства удаляет друг от друга звёзды, галактики и их скопления. В связи с этим существует теория, согласно которой в далёком прошлом они не просто располагались ближе друг к другу, а вообще были перемешаны и сжаты в единое вещество. Однако оно было настолько плотным и горячим, что началось общее расширение, в итоге и приведшее к образованию Вселенной.

С тех пор прошло приблизительно 14 миллиардов лет. За это время совершилось такое развитие:

В итоге Вселенная сформировалась такой, какой человечество знает её сейчас. Её краткая модель выглядит следующим образом:

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Образованная этими компонентами структура имеет гигантскую территорию. Реальный размер Вселенной современной наукой не установлен. Многие учёные настаивают на том, что она бесконечна. Однако если за условную границу принять расстояние до самого далёкого от Земли видимого объекта, то её масштабы составляют 45,7 миллиарда световых лет. Эта величина носит название радиуса Хаббла. Он не тождественен понятию конца мироздания, а только обозначает, что при прохождении этого расстояния быстрота удаления объекта от наблюдателя начинает превышать скорость света.

Исчерпывающей информации нет и о форме Метагалактики. Последние измерения астрономического спутника Планк позволяют сделать вывод, что она плоская, но исследования на этом этапе ещё не заканчиваются, и, возможно, в ближайшем будущем откроются новые факты, противоречащие всему тому, что известно людям сейчас.

Внутреннее устройство

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Несмотря на всю необъятность, строение Вселенной представляется достаточно простым. Она однородна по плотности, изменяется во времени по строго определённым законам, поэтому однозначно постоянной считаться не может.

Вселенная многолика. Она включает в себя множество разнообразных компонентов, проявляющихся в разных формах. Самыми крупными структурами в ней считаются галактические нити, совместно с космическими пустотами, формирующие «стены».

В них группируются галактики Вселенной. Они представлены в огромном количестве порядка двух триллионов. Человечество проживает в Млечном пути, который расположен в стене, называемой комплексом сверхскоплений Рыб-Кита. Другие звёздные системы расположены чрезвычайно далеко от этой галактики. Тем не менее несколько из них можно рассмотреть невооружённым глазом. Они носят следующие названия:

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Все они, как и Млечный путь, относятся к спиральному классу. Также во Вселенной есть эллиптические и неправильные галактики.

Методы изучения

Так как же была получена вся эта интересная информация о тайнах Вселенной? Учёные пользуются сразу несколькими методами изучения мироздания:

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Возможно, вскоре будут открыты и другие методы изучения Вселенной. Человечество узнает о ней что-то совсем необычное, и это навсегда перевернёт представления о мироздании.

Но даже предположить трудно, чтобы когда-нибудь люди смогли полностью изучить космическое пространство. На его территории колоссальных размеров, кажется, всегда будет оставаться место для тайн.

Источник

Строение и эволюция Вселенной

Вселенная — это необъятные просторы, в которых находиться черная материя, триллионы галактик и звездных скоплений. У нее нет границ ни в пространстве, ни во времени. Огромные космические просторы таят в себе много тайн, для разгадки которых важно определить принципы эволюции и строение Вселенной.

Совокупность наблюдаемых галактик всех типов и их скоплений, а также межгалактической среды, образует Вселенную.

Эволюция Вселенной

Самым главным свойством Вселенной является её постоянное расширение. Впервые гипотезу о расширении Вселенной выдвинул Альберт Эйнштейн, однако строгих расчётов им предложено не было.

В 1920 году русский учёный Александр Александрович Фридман занялся анализом десяти сложнейших уравнений теории относительности и пришёл к фундаментальному выводу: ни при каких условиях их решение не может быть единственным. Это означало, что невозможно точно ответить на вопрос о том, какой формой обладает Вселенная, каков её радиус кривизны и вообще, стационарна она или нет.

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Но тем не менее Фридманом было получено три возможные модели нестационарной Вселенной: две из них описывали монотонно расширяющуюся Вселенную. А третья модель предполагала периодичность Вселенной, то есть радиус кривизны её пространства сначала возрастает от нуля до некоторого значения, а затем вновь уменьшается до нуля.

Всё это говорило о том, что Вселенная не может находится в стационарном состоянии, она должна расширяться и сжиматься под действием гравитационных сил.

Но почему же Вселенная расширяется?

Ответ на этот вопрос впервые предложили бельгийский священник Жорж Леметр и советско-американский физик Георгий Антонович Гамов. Итак, согласно их теории, Вселенная возникла около 14 миллиардов лет назад в результате Большого взрыва и с тех пор непрерывно расширяется, и охлаждается.

До взрыва не было ничего: ни материи, ни пространства, ни времени. Четыре фундаментальных взаимодействия объединены в одно. А сама Вселенная представляла собой некую субстанцию с бесконечно малым объёмом и бесконечно большой плотностью.

Такое состояние материи принято называть сингулярностью.

Этапы формирования Вселенной

Теория Большого взрыва позволила ученым создать точную модель эволюции Мироздания. И сегодня мы неплохо знаем, какие процессы происходили в молодой Вселенной. Исключение составляет лишь самый ранний этап творения, который по-прежнему остается предметом яростных обсуждений и споров.

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

В настоящее время наукой выделяются следующие этапы после Большого взрыва:

Недостатки теории Большого взрыва

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Некоторые ученые отмечают в теории Большого взрыва слабые места. Если бы мироздание образовалось мгновенно из одной небольшой точки, то должно было существовать неоднородное распределение вещества, чего мы не наблюдаем. Также данная модель не может объяснить, куда подевалась антиматерия, количество которой в «момент творения» не должно было уступать обычной барионной материи. Однако сейчас число античастиц во Вселенной мизерно. Но самый весомый недостаток данной теории – ее неспособность объяснить феномен Большого взрыва, он просто воспринимается как свершившийся факт. Мы не знаем, как выглядела Вселенная до момента сингулярности.

Предпринимались попытки улучшить существующую теорию Большого взрыва. Например, существует гипотеза о цикличности Вселенной, согласно которой, рождение из сингулярности – не более чем ее переход из одного состояния в другое. Правда, такой подход противоречит второму закону термодинамики.

Существуют и другие гипотезы зарождения и дальнейшей эволюции мироздания. Долгие годы была популярна модель стационарной Вселенной. Ряд ученых придерживались мнения, что в результате квантовых флуктуаций она возникла из вакуума. В их числе был и знаменитый Стивен Хокинг.

Ли Смолин выдвинул теорию о том, что наша, как и другие Вселенные, образовались внутри черных дыр.

Строение Вселенной

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Во все времена люди предпочитали считать Вселенную вечной и неизменной. Эта точка зрения господствовала вплоть до 20-х годов нашего века. В то время считалось, что она ограничена размерами нашей Галактики. Пути могут рождаться и умирать, Галактика все равно остается все той же, как неизменным остается лес, в котором поколение за поколением сменяются деревья.

Настоящий переворот в науке о Вселенной произвели в 1922 — 1924 годах работы ленинградского математика и физика А. Фридмана. Опираясь на только что созданную тогда А. Эйнштейном общую теорию относительности, он математически доказал, что мир — это не нечто застывшее и неизменное. Как единое целое он живет своей динамической жизнью, изменяется во времени, расширяясь или сжимаясь по строго определённым законам.

Общие представления о строении Вселенной складывались на протяжении всей истории астрономии. Однако только в нашем веке смогла появиться современная наука о строении и эволюции Вселенной — космология.

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Структура Вселенной довольно сложна и имеет несколько уровней организации, которые мы можем классифицировать в соответствии с масштабом объектов:

Каждый из вселенских объектов — это уникальное формирование с таинственной структурой.

Сегодня мы гораздо лучше понимаем устройство Вселенной, но каждое полученное знание лишь рождает новые вопросы. Исследование атомных частиц в коллайдере, наблюдение за жизнью в дикой природе, высадку межпланетного зонда на астероиде также можно назвать изучением Вселенной, ибо данные объекты входят в ее состав. Человек тоже часть нашей прекрасной звездной Вселенной. Изучая Солнечную систему или далекие галактики, мы больше узнаем о самих себе.

Размеры Вселенной

Говоря о размерах Вселенной, мы имеем ввиду ее видимую часть, называемую еще Метагалактикой. Чем больше результатов наблюдений мы получаем, тем дальше раздвигаются границы Вселенной. Причем происходит это одновременно по всем направлениям, что доказывает ее сферическую форму.

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Космическая карта Вселенной

Наш мир появился около 13,8 млрд лет назад в результате Большого взрыва – события, породившего звезды, планеты, галактики и другие объекты. Эта цифра является реальным возрастом Вселенной.

Исходя из скорости света можно предположить, что ее размеры также составляют 13,8 млрд световых лет. Однако на самом деле они больше, ибо с момента рождения Вселенная непрерывно расширяется. Часть движется со сверхсветовой скоростью, из-за чего значительное количество объектов во Вселенной останутся невидимыми навеки. Данный предел называются сферой или горизонтом Хаббла.

Диаметр Метагалактики составляет 93 млрд световых лет. Мы не знаем, что находится за пределами известной Вселенной. Может быть, существуют и более далекие объекты, недоступные сегодня для астрономических наблюдений. Значительная часть ученых верит в бесконечность Вселенной.

Возраст Вселенной неоднократно проверялся с использованием различных методик и научных инструментов. Последний раз его подтвердили с помощью орбитального телескопа «Планк». Имеющиеся данные полностью соответствуют современным моделям расширения Вселенной.

Будущее Вселенной

Наше мироздание началось с маленькой точки. Быстрое развитие и расширение границ привело к образованию необъятных космических просторов. Но, будет ли остановлено расширение? Возможен ли обратный вариант развития, то есть сжатия в ту же исходную плотную точку?

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Модели будущего Вселенной

В 1990-х годах, специалисты пришли к выводу, что реальны два варианта будущего Вселенной.

“Сжатие” космических просторов возможно! При достижении максимальных размеров, она может разрушиться. Плотность черной материи может достичь критических показателей, из-за чего будет сжиматься.

Также, существует предположение, что причиной разрушения мироздания могут стать черные дыры. Все звездные скопления могут прекратить передачу энергии и преобразоваться в черные дыры. Если температура космического пространства приблизиться к нулю, возможно их испарение. В результате чего, все разрушиться и наступит логичный конец.

Интересные факты о Вселенной

10.От минус 270 градусов по Цельсию До 50 миллионов градусов по Цельсию.

В космосе буквально везде встречаются довольно экстремальные условия. Температура сверхновой может достигать более 50 миллионов градусов по Цельсию, т. е. в пять раз выше температуры ядерного взрыва. С другой же стороны, в открытом космосе температура составляет минус 270 градусов по Цельсию.

9.Наши тела состоят из звезд

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Ваше и любое другое тело во Вселенной состоит из звезд, точнее, мертвых звезд. В самом начале существовали только простые элементы, такие как водород и гелий. Потом эти элементы соединились и сформировали первые звезды, которые в свою очередь образовали новые элементы, такие как железо и золото. Через какое-то время первые звезды погибли, и их взрывы сформировали новые элементы. Наши тела состоят из практически всех элементов, которые есть во Вселенной – конечно, большую часть составляют элементы вроде водорода и кислорода, но в нас также содержатся небольшие порции таких элементов, как золото!

8. Когда вы смотрите на небо, вы смотрите в прошлое

Звезды, которые вы видите – вовсе не звезды, а свет, который они излучали много лет назад. Из-за того, что свету требуется определенное время, чтобы достичь нас, мы видим его таким, каким он был какое-то время назад. Один световой год – это расстояние, которое свет преодолевает за год. Так что, если вы смотрите на звезду, которая находится на расстоянии 1000 световых лет, вы видите ее такой, какой она выглядела 1000 лет назад.

7.Парадокс Ферми.Инопланетная жизнь.

Ученые настолько заинтересованы инопланетной жизнью, что придумали десятки различных интересных техник, направленных на ее поиск. Например, проект SETI (Search for Extraterrestrial Intelligence), чтобы ускорить обнаружение инопланетян, использует свои методы для поиска космического мусора, ближайших звезд, искусственных объектов, радиоволн и радиации.

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Вселенная настолько огромная и старая, что есть очень большие шансы на обнаружение других планет, похожих на Землю. Однако, согласно парадоксу Ферми, высокая вероятность внеземной жизни в космосе противоречит отсутствию видимых доказательств, подтверждающих это. На данный момент люди даже не уверены, что страшней: тот факт, что они не одиноки во Вселенной или то, что рядом есть кто-то еще.

6. Во Вселенной как минимум 10 миллиардов триллионов звезд

Хотя ученые не могут прийти к единому согласию в этом вопросе, самой достоверной цифрой в нашем распоряжении является 10 миллиардов триллионов. Каждая звезда отличается по размеру и может быть в сотни раз меньше или больше нашего Солнца. Вдобавок, каждую звезду окружают звездные тела, вроде планет, которых может быть от 4 до 12.

5. Вселенных может быть больше

4. Черные дыры тоже умирают

Черные дыры – тела различных размеров, которые мы не можем видеть. Они обладают немыслимой силой притяжения, которую не способен преодолеть даже свет, и они питаются пойманным светом, чтобы выжить.

Что определяет строение и структуру вселенной. Смотреть фото Что определяет строение и структуру вселенной. Смотреть картинку Что определяет строение и структуру вселенной. Картинка про Что определяет строение и структуру вселенной. Фото Что определяет строение и структуру вселенной

Однако Стивен Хокинг утверждает, что если черные дыры «голодают» слишком долго, через какое-то время они могут умереть.

3. Вселенная растет

До 1920-х люди считали, что Вселенная стоит на месте, но астроном Эдвин Хаббл обнаружил, что она расширяется. Многие годы люди ошибались, исходя из предположения, что гравитация замедляет Вселенную, но такой факт был бы верен только в том случае, если бы гравитация была сильнее. Более того, в 1998 году телескоп «Хаббл» зафиксировал, что сверхновые звезды в прошлом расширялись медленнее, чем сейчас, что только подтверждает теорию Хаббла.

2. Вселенная полна невидимых вещей

Существует мнение, что мы видим и знаем только 4% Вселенной, так как 96% может состоять из темной материи и темной энергии, которые мы все еще не можем обнаружить. Эти неизвестные сущности предположительно расталкивают видимую материю, что приводит к расширению Вселенной и другим возможным эффектам, которые пока нам неизвестны.

1. Наши предки знали о Вселенной больше, чем мы знаем сейчас

Наши предки были куда умнее, чем думают многие. Хотя они не строили небоскребы и не создавали компьютеры, они много знали о растениях и травах, географии и астрономии. Не будем забывать о Стоунхендже, пирамидах Гизы, линиях Наски и сотнях других известных мест, которые наши предки предположительно использовали для наблюдения за небом. Они полагали, что изменения в небе играли большую роль в их жизни, поэтому делали точные космологические расчеты. Полученная информация помогала им определять, когда лучше всего было выращивать еду, путешествовать в опасные земли, заключать союзы и принимать важные решения.

Видео

Источник

Астрономия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Структура Вселенной и ее размеры

На протяжении многих тысячелетий человечество считало, что Вселенная вечна и неизменна. Данная теория господствовала во всем в мире вплоть до начала ХХ столетия. Колоссальный переворот в науке о космическом пространстве произошел в 20-е годы прошлого века, благодаря таким ученым как Эйнштейн, Фридман и Хаббл. Именно они выдвинули предположения и доказали, что Вселенная – это целая система, которая живет своей жизнью и способна изменяться во времени, то есть расширяться или сжиматься.

В структуре Вселенной выделяют несколько уровней организации, каждый из которых отличается масштабом объектов:

Практически все космические тела в необъятной Вселенной формируют группы. Звезды группируются парами или входят в звездные скопления. В таких скоплениях могут содержаться десятки или даже сотни таких светил. Исключением считается Солнце, так как у него нет «двойника».

Скопление галактик в Персее Источник

Все структуры Вселенной являются уникальными и таинственными. Человечество уже гораздо лучше понимает, как устроено космическое пространство. Но с каждым новым открытием у ученых появляются и новые вопросы, ответы на которое порой не так легко найти.

Изучая размеры Вселенной, астрономы могут говорить только о ее видимой части, которую научно называют Метагалактикой. Чем больше сведений и знаний ученые получают о ней, тем больше становятся ее границы, причем они расширяются абсолютно во всех направлениях. Это говорит о сферической форме Вселенной.

Математическая модель Вселенной Источник

Мир галактик

Итак, как уже было отмечено, галактика – это одна из главнейших структур в составе Вселенной. Образование галактических систем является естественным процессом, на который уходит много времени. Все началось с появления протоскоплений – облаков, состоящих из газа и пыли, из которых образуются звездные скопления. Динамические процессы в них способствовали выделению галактических групп. Известно, что галактики могут иметь различные формы. Это объясняется отличием первостепенных условий их формирования.

Абсолютно в каждой галактической системе выделяют два поколения звезд. Первое – гелиево-водородные объекты, в составе которых также содержится незначительное количество тяжелых металлов. Иными словами – это самые старые звезды. К другому поколению относят объекты, обогащенные тяжелыми металлами. Такие звезды формируются из межзвездного газа.

Процесс образования звезды из газопылевого облака Источник

Мир галактик настолько велик, что ученые до сих пор затрудняются ответить, сколько же таких структур существует во Вселенной. Принято считать, что их около 100 млрд., а в пространстве они располагаются неравномерно. Практически 95% из них сливаются в группы, образуя скопления и сверхскопления галактик. В каждом таком скоплении имеется главная эллиптическая или спиралевидная галактика. Ее гравитационные силы настолько мощные, что она притягивает к себе остальных «спутников», тем самым разрушая их поле гравитации.

В космическом пространстве наблюдается постоянное перемещение и взаимодействие галактических систем между собой. Иногда происходит их столкновение и тогда одна галактика поглощает другую, а в космос выбрасывается огромное количество энергии. Бывает, что галактики проходят рядом друг с другом и только слегка меняют свою структуру.

Скопления и сверхскопления галактик

Скопление галактик в Волосах Вероники

Скопление галактик в Деве

Сверхскопления – структура, в состав которой входят скопления галактик и несколько отдельных галактических систем. Как правило, в одном сверхскоплении их насчитывается от 2 до 20, располагаются они в галактических нитях, или же в узлах их пересечения.

Размеры сверхскоплений галактик во Вселенной достигают сотен млн. световых лет. Это настолько много, что объекты не способны удерживаться между собой гравитационными силами. Самые известные сверхскопления:

Квазары

В масштабах всей Вселенной квазары являются самыми интересными и таинственными объектами. Их яркое сияние способно затмить целые галактические системы. Само слово «квазар» переводится как «радиоисточник, похожий на звезду». Астрономы предполагают, что квазары – это активные ядра галактики. Такие виды галактических систем не входят в традиционную классификацию.

По другой версии, квазары представляют собой огромные черные дыры, которые активно поглощают все, что находится в округе. По мере приближения к ним вещества, его скорость растет, а само вещество разогревается. Магнитное поле черной дыры собирает мельчайшие частички в пучки, которые в дальнейшем разлетается от ее полюсов. Третья версия гласит, что квазары – это начальная стадия жизни галактики, то есть человечество видит их фактическое формирование. Какая из этих теорий является максимально правдивой никому не известно, но каждая из них имеет право на существование.

Мощность излучения квазара просто огромна. Она в сотни раз превышает мощность излучения всех звезд в одной галактике. Сложно представить, что объект отдален от человека на несколько миллиардов световых лет, но при этом его можно увидеть в обычный телескоп. За одну единицу времени квазар производи в 10 триллионов раз больше энергии, чем Солнце. А его размер можно сравнить с размером Солнечной системы.

Расстояние до квазаров исчисляются миллиардами световых лет. Для них характерно красное смещение, то есть эти объекты удаляются от Земли. Причем скорость этого удаления достигает фантастических показателей. Ученые предполагают, что скорость квазара 3С196- 200 тыс. км/с (это 2/3 скорости света), а расстояние с ним составляет 12 млрд. световых лет. Для сравнения максимальная скорость движения галактических систем всего несколько десятков тыс. км/с.

Еще одна интересная особенность квазаров – их переменность. Они постоянно меняют свою светимость, что совершенно нехарактерно для галактик. Был зафиксирован случай, когда блеск объекта за один час сменился 25 раз. Исходя из последних наблюдений, выяснилось, что многие квазары находятся около центров огромных эллиптических галактик.

Самый первый квазар был открыт в 1960 г благодаря Мэтью Сэндиджу. Он получил название 3с273. В современном мире квазары во Вселенной определяют по красному смещению их спектра. Если обнаружено такое смещение и при этом объект выделяет огромное количество энергии, его смело начинают именовать квазаром. Сейчас в космическом пространстве их обнаружено около 2-х тысяч. Эти космические объекты изучаются с помощью телескопа Хаббла. Расстояние между Землей и ближайшим квазаром составляет 800 млн. световых лет.

Вид квазара в телескопе Источник

Понятие темной энергии

В астрономии понятие темное энергии включает в себя энергию (существующую в теории), которая была введена в математическую модель Вселенной, чтобы объяснить ее расширение с ускорением. Ученые предполагают, что эта энергия не способна собираться в сгустки (в отличие от темной материи), а равномерно распределяется по всем просторам Вселенной. Темная энергия присутствует в галактиках, в галактических скоплениях, а также за их пределами. Интересным является тот факт, что она действует против гравитационных сил, то есть испытывает антигравитацию.

С помощью современных астрономических технологий ученые способны не только измерить скорость расширения Вселенной, но и проанализировать, как этот процесс изменялся со временем. Дело в том, что ускорение расширения Вселенной только растет, что позволяет говорить об антигравитационных силах. Если бы в космическом пространстве гравитация была стандартной, то со временем отдаление галактик друг от друга замедлялось бы.

Астрономы предполагают, что темной энергией может выступать вакуум. Его плотность не изменяется во время расширения Вселенной, что может означать его отрицательное давление. Также есть мнение, что темная энергия – это сверхслабое поле, которое пронизывает все пространство Вселенной, научно его называют «квинтэссенция».

К сожалению, на сегодняшний день не существует возможности в земных условиях экспериментально исследовать темную энергию. Но это не означает, что в будущем человечество не сможет объяснить природу данного явления или выяснить другие причины, способствующие такому быстрому ускорению расширения Вселенной.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *