Что определяет распределение тепла на земле
§ 30. Распределение солнечного света и тепла на Земле (учебник)
§ 30. Распределение солнечного света и тепла на Земле
1. Вспомните, почему на Земле происходит смена дня и ночи и времен года.
2. Что называется орбитой Земли?
Изменение высоты Солнца над горизонтом в течение года. Чтобы понять, почему на протяжении года Солнце в полдень бывает на разной высоте над горизонтом, вспомните с уроков природоведения особенности движения Земли вокруг Солнца.
На глобусе видно, что земная ось имеет наклон. Во время движения Земли вокруг Солнца угол наклона не меняется. Благодаря этому Земля возвращается к Солнцу больше то Северной, то Южной полушарием. От этого изменяется угол падения солнечных лучей на земную поверхность. И соответственно больше освещается и нагревается то одна, то другая полушарие.
Если бы земная ось была бы не наклонена, а перпендикулярна плоскости орбиты Земли, то количество солнечного тепла на каждой параллели течение года, не изменялась бы. Тогда бы в своих наблюдениях за высотой полуденного Солнца, вы целый год записывали бы одну и ту же длину тени гномона. Это указывало бы на то, что в течение года продолжительность дня всегда равен ночи. Тогда земная поверхность нагревалась в течение года одинаково и пор года не существовало бы.
Освещение и нагрев поверхность Земли в течение года. По поверхности шарообразной Земли солнечное тепло и свет распределяются неравномерно. Это объясняется тем, что угол падения лучей на разных широтах разный.
Вы уже знаете, что земная ось наклонена к плоскости орбиты под углом. Своим северным концом она направлена в сторону Полярной звезды. Солнце всегда освещает половину Земли. При этом более освещается то Северная полушарие (и день там длится дольше, чем в другом полушарии), то, наоборот, Южная. Дважды в год оба полушария бывают освещены одинаково (тогда и продолжительность дня в обоих полушариях одинакова).
В настоящее время Южный полюс отвлеченный от Солнца и оно меньше освещает и нагревает Южное полушарие. Там зима. На полюс и приполярной часть течение суток солнечные лучи совсем не попадают. Солнце не появляется из-за горизонта и день не наступает. Это явление называется полярная ночь. На самом полюсе она длится 180 дней, а чем дальше на север, тем становится короче до одних суток на параллели 66,5 0 ю. ш. Эту параллель называют Южным полярным кругом.Севернее от нее Солнце появляется на горизонте и смена дня и ночи происходит каждые сутки. 22 июня День будет кратчайшим в году. Для Южной полушарии он будет зимним солнцестоянием.
Через три месяца, 23 сентября, Земля займет такое положение относительно Солнца, когда солнечные лучи одинаково освещать как Северную, так и Южное полушарие. Отвесно солнечные лучи падают на экваторе. На всей Земле, кроме полюсов, день равен ночи (по 12 ч ). Этот день называют днем осеннего равноденствия .
Занимательная география
Рис. Годовое движение Земли вокруг Солнца
Жаркий пояс размещен вдоль экватора, между Северным и Южным тропиками. Он ограничен с обеих сторон изотерм 20 0 С. Интересно, что границы пояса совпадают с границами распространения пальм на суше и кораллов в океане. Здесь земная поверхность получает наибольшее солнечного тепла. Дважды в год (22 декабря и 22 июня) полдень солнечные лучи падают почти отвесно (под углом 90 0 ). Воздуха от поверхности сильно нагревается. Поэтому там жарко в течение года.
Умеренные пояса (В обоих полушариях) примыкают к жаркому поясу. Они протянулись в обоих полушариях между полярным кругом и тропиком. Солнечные лучи там падают на земную поверхность с некоторым наклоном. Причем, чем севернее, тем наклон больше. Поэтому солнечные лучи меньше нагревает поверхность. В результате меньше нагревается и воздух. Вот почему в умеренных поясах холоднее, чем в жарком. Солнце там никогда не бывает в зените. Четко выраженные времена года: зима, весна, лето, осень. При этом чем ближе к полярному кругу, тем зима длительная и холоднее. Чем ближе к тропика, тем продолжительнее и теплее лето. Умеренные пояса со стороны полюсов ограничивает изотерма теплого месяца 10 0 С. Она является пределом распространения лесов.
Холодные пояса (Северный и южный) обоих полушарий лежат между изотермами 10 0 С и 0 0 С самого теплого месяца. Солнце там зимой по несколько месяцев не появляется над горизонтом. А летом, хотя и не заходит за горизонт месяцы, однако стоит очень низко над горизонтом. Его лучи лишь скользят по поверхности Земли и нагревают ее слабо. Поверхность Земли не только нагревает, но и охлаждает воздух. Поэтому температуры воздуха там низкие. Зимы холодные и суровые, а лето короткое и прохладное.
Два пояса вечного холода ( северный и южный) оконтурюються изотермой с температурами всех месяцев ниже 0 0 С. Это царство вечных с нигив и льда.
Важно помнить, что линии тропиков и полярных кругов за пределы тепловых поясов принимаются условно. Поскольку в действительности температура воздуха определяется еще и рядом других условий.
Рис. Тепловые пояса Земли
Вопросы и задачи
1. Почему высота Солнца в течение года меняется?
2. Какой полушарием будет обращена к Солнцу Земля, когда в Украине: а) на севере 22 июня; б) полдень 22 декабря?
3. Где средняя годовая температура воздуха будет выше: в Сингапуре или Париже?
4. Почему средние годовые температуры снижаются от экватора к полюсам?
5. В каких тепловых поясах находятся материки Африка, Австралия, Антарктида, Северная Америка, Евразия?
6. В каком тепловом поясе расположена территория Украины?
Тепловой баланс Земли
Земная поверхность, поглощая солнечную радиацию и нагреваясь, сама становится источником излучения тепла в атмосферу и через нее в мировое пространство. Чем выше температура поверхности, тем выше излучение. Собственное длинноволновое излучение Земли большей частью задерживается в тропосфере, которая при этом нагревается и излучает радиацию — противоизлучение атмосферы. Разность между излучением земной поверхности и противоизлучением атмосферы называется эффективным излучением. Оно показывает фактическую потерю тепла поверхностью Земли и составляет около 20%.
Рис. 7.2. Схема среднегодового радиационного и теплового баланса, (по К.Я.Кондратьеву, 1992)
Атмосфера в отличие от земной поверхности больше излучает, чем поглощает. Дефицит энергии компенсируется приходом тепла от земной поверхности вместе с водяным паром, а также за счет турбулентности (в процессе подъема нагретого у земной поверхности воздуха). Возникающие между низкими и высокими широтами температурные контрасты сглаживаются за счет адвекции — переноса тепла морскими и главным образом воздушными течениями от низких широт к высоким (рис. 7.2, правая часть). Для общегеографических выводов важны также ритмические колебания радиации из-за смены времен года, так как от этого зависит тепловой режим конкретной местности. Отражательные свойства земных покровов, теплоемкость и теплопроводность сред еще больше усложняют перенос тепловой энергии и распределение теплоэнергетических характеристик.
Уравнение теплового баланса.Количество тепла описывается уравнением теплового баланса, которое у каждого географического района свое. Его важнейшим компонентом является радиационный баланс земной поверхности. Солнечная радиация расходуется на нагревание почвы и воздуха (и воды), испарение, таяние снега и льда, фотосинтез, почвообразовательные процессы и выветривание горных пород. Поскольку для природы всегда характерно равновесие, равенство наблюдается между приходом энергии и ее расходом, что выражается уравнением теплового баланса земной поверхности:
где R — радиационный баланс; LE — тепло, затрачиваемое на испарение воды и таяние снега или льда (L — скрытое тепло испарения или парообразования; Е — скорость испарения или конденсации); А — горизонтальный перенос тепла воздушными и океаническими течениями или турбулентным потоком; Р — теплообмен земной поверхности с воздухом; В — теплообмен земной поверхности с почвой и горными породами; F — расход энергии на фотосинтез; С — расход энергии на почвообразование и выветривание; Q+q — суммарная радиация; а — альбедо; I — эффективное излучение атмосферы.
На долю энергии, расходуемой на фотосинтез и почвообразование, приходится менее 1% радиационного бюджета, поэтому в уравнении эти составляющие часто опускаются. Однако в реальности они могут иметь значение, поскольку эта энергия обладает способностью аккумулироваться и преобразовываться в другие виды (превратимая энергия). Маломощный, но продолжительный (сотни миллионов лет) процесс накопления превратимой энергии оказал существенное влияние на географическую оболочку. В ней скопилось около 11×10 14 Дж/м 2 энергии в рассеянном органическом веществе в осадочных породах, а также в виде каменного угля, нефти, сланцев.
Уравнение теплового баланса можно вывести для любого географического района и отрезка времени, учитывая специфичность климатических условий и вклад компонентов (для суши, океана, районов с льдообразованием, незамерзающих и др.).
Перенос и распределение тепла.Перенос тепла от поверхности в атмосферу происходит тремя путями: тепловое излучение, нагревание или охлаждение воздуха при контакте с сушей, испарение воды. Водяные пары, поднимаясь в атмосферу, конденсируются и образуют облака или выпадают в виде осадков, а выделяемое при этом тепло поступает в атмосферу. Поглощенная атмосферой радиация и тепло конденсации водяных паров задерживают потерю тепла земной поверхностью. Над засушливыми районами это влияние уменьшается, и мы наблюдаем самые большие суточные и годовые амплитуды температуры. Наименьшие амплитуды температуры присущи океаническим районам. Являясь огромным резервуаром, океан хранит больше тепла, что ослабляет годовые колебания температуры вследствие высокой удельной теплоемкости воды. Таким образом, на Земле вода играет важную роль как аккумулятор тепла.
До 80% энергии, поглощаемой океаном, расходуется на испарение воды. Это составляет 12×10 23 Дж/м 2 в год, что в 7 раз больше аналогичной статьи теплового баланса суши. 20% энергии расходуется на турбулентный теплообмен с атмосферой (что также больше, чем на суше). Вертикальный теплообмен океана с атмосферой стимулирует и горизонтальный перенос тепла, благодаря чему оно частично оказывается на суше. В теплообмене океана и атмосферы участвует 50-метровый слой воды.
Изменение радиационного и теплового баланса.Годовая сумма радиационного баланса почти всюду на Земле положительна, за исключением ледниковых районов Гренландии и Антарктиды. Его среднегодовые значения уменьшаются в направлении от экватора к полюсам, следуя закономерности распределения солнечной радиации по земному шару (рис. 7.3). Радиационный баланс над океаном больше, чем над сушей. Это связано с меньшим альбедо водной поверхности, повышенным влагосодержанием в экваториальных и тропических широтах. Сезонные изменения радиационного баланса происходят на всех широтах, но с разной степенью выраженности. В низких широтах сезонность определяется режимом осадков, так как термические условия здесь мало изменяются. В умеренных и высоких широтах сезонность определяется термическим режимом: радиационный баланс меняется от положительного летом до отрицательного зимой. Отрицательный баланс холодного периода года в умеренных и полярных широтах частично компенсируется за счет адвекции теплоты воздушными и морскими течениями из низких широт.
Для сохранения энергетического баланса Земли должен существовать перенос тепла в направлении полюсов. Несколько менее из этого тепла переносится океаническими течениями, остальное атмосферой. Различия в нагревании Земли обусловливают ее действия как географической тепловой машины, в которой происходит передача тепла от нагревателя к холодильнику. В природе этот процесс реализуется в двух формах: во-первых, термодинамические пространственные неоднородности формируют планетарные системы ветров и морских течений; во-вторых, данные планетарные системы сами участвуют в перераспределении тепла и влаги на земном шаре. Таким образом, от экватора в направлении к полюсам потоками воздуха или океаническими течениями переносится тепло, а к экватору переносятся холодные воздушные или водные массы. На рис. 7.4 показан перенос теплой поверхностной воды в Атлантическом океане к полюсу. Перенос тепла по направлению к полюсам достигает максимума около широты 40° и становится равным нулю у полюсов.
Приток солнечной радиации зависит не только от географической широты, но и от времени года (табл. 7.4). Примечательно, что в летний период в Арктику поступает тепла даже больше, чем на экватор, однако вследствие высокого альбедо арктических морей льды здесь не тают.
Распределение температуры.На горизонтальное распределение температуры влияют географическое положение, рельеф, свойства и вещественный состав подстилающей поверхности, системы океанических течений и характер атмосферной циркуляции в приземном и приводном слоях.
Рис. 7.3. Распределение среднегодового радиационного баланса на земной поверхности, МДж/(м 2 ×год) (по С.П.Хромову и М.А.Петросянцу, 1994)
Рис. 7.4. Перенос тепла в северной части Атлантического океана, °С (по С. Нешиба, 1991). Заштрихованы районы, где поверхностные воды теплее, чем в среднем по океану. Цифры обозначают объемные переносы воды (млн м 3 /с), стрелки — направление течений, жирная линия — Гольфстрим
Таблица 7.4. Суммарная радиация, поступающая на земную поверхность (Н.И.Егоров, 1966)
Широта, град | Месяцы | ||||||||||
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII |
N 90 | |||||||||||
S 10 |
Средняя температура земной поверхности составляет около 15°С. Самые высокие температуры (рис. 7.5) наблюдаются на термическом экваторе — линии, соединяющей точки с наиболее высокой среднегодовой температурой (выше 28°С), который примерно соответствует параллели 5° с.ш. на океанах и 10° с.ш. на суше. Смещение термического экватора в Северное полушарие обусловлено охлаждающим воздействием ледяного панциря Антарктиды, с высоким до 60% альбедо и отрицательным радиационным балансом. Кроме того, большая часть Южного полушария занята водой, прогреваемость которой ниже, чем у суши.
Вертикальное распределение температуры зависит от термических свойств вещества, слагающего геосферы, и высотного (глубинного) уровня стратификации. Вверх от земной поверхности, в тропосфере, температура воздуха (за исключением присущих этому слою инверсий) понижается в среднем на 0,6°С на каждые 100 м высоты. В литосфере температура повышается с глубиной в среднем на 1—3°С на каждые 100 м (хотя и здесь возможны отклонения от нормального градиента). Для океаносферы, средняя температура которой составляет 4°С, характерна двухслойная стратификация вод: верхний однородный слой, ограниченный снизу термоклином (слоем скачка температуры), в которым происходят сильные перепады температур, и основная масса вод Мирового океана, расположенная глубже, с характерной температурой от 1 до 2,5°С.
Рис. 7.5. Распределение среднегодовой температуры воздуха на земной поверхности, °С (С.Г.Любушкина, К.В.Пашканг, 2002)
Нарушение плотностной стратификации, особенно в таких подвижных геосферах, как атмосфера и гидросфера, обусловливает движение воздуха и воды в вертикальном и горизонтальном направлениях. Усиление или ослабление этого процесса приводят к перераспределению тепла (выравниванию, понижению или повышению температуры), появлению или размыванию слоистости воздушных и водных масс.
Рис. 7.6. Схема возникновения элементарной конвективной ячейки (по К. И. Геренчуку и др.). Объяснение в тексте
Земля как тепловая машина.Основа атмосферной циркуляции — неравномерное распределение теплоты в атмосфере. Давление в любой точке атмосферы равно весу вышележащего столба воздуха. При равномерном нагревании земной поверхности и атмосферы давление с высотой изменяется одинаково во всех точках, находящихся на одной высоте, что можно изобразить с помощью изобар, которые в таком случае будут горизонтальными (рис. 7.6, а). Поступление дополнительного тепла в точку В приведет к локальному расширению воздуха и наклону изобар вверх (рис. 7.6, б). Это не вызовет изменения давления у земной поверхности, однако в атмосфере возникнет разность давления по горизонтали, причем горизонтальный барический градиент будет направлен в сторону точки А. Перенос воздуха в этом направлении на высоте приведет к увеличению массы воздуха над точкой А и, следовательно, к повышению давления в точке А. В результате градиент давления возникнет и у земной поверхности, но его направление будет противоположным к точке В (рис. 7.6, в). Соответственно этому будет происходить перенос приземного воздуха. Над теплым участком местности у земной поверхности возникает минимум давления, а над холодным — максимум. На некоторой высоте положение минимума и максимума обратное. Поскольку в области минимума воздух движется вверх (восходящий поток), а в области максимума поток воздуха нисходящий, то образуется замкнутая вертикальная конвективная ячейка циркуляции — элементарная тепловая машина. Возникающее движение изменяет свое направление под влиянием силы Кориолиса. В районах преобладания высокого давления формируются нисходящие движения воздуха — антициклоны, а в районах преимущественно пониженного давления умеренных широт — циклоны.
Атмосфера — наиболее подвижная часть географической оболочки. В механическую энергию атмосферных движений переходит 1—2% удерживаемой земной поверхностью солнечной энергии. Этот переход осуществляется в процессе функционирования географических тепловых машин, учение о которых принадлежит В.В. Шулейкину.
Самой большой географической тепловой машиной является система «экватор—полюсы», которую следует называть тепловой машиной первого рода. С ней связаны особенно крупномасштабные движения в атмосфере. В такой машине разность температур постоянно поддерживается неравномерным поступлением солнечной радиации на сферическую поверхность Земли. Поток тепла более выражен в направлении зимнего полушария, вследствие чего происходит некоторое сглаживание температурных контрастов, как по широте, так и между зимним и летним полушариями.
Различия в нагревании материков и океанов приводят к возникновению тепловых машин второго рода. Данная модель меняет свой знак в зависимости от сезона года: зимой роль нагревателя исполняет океан, летом — суша. Ей соответствует зарождение муссонов.
Географическую тепловую машину третьего рода образуют горизонтальные круговороты воды — циклонические и антициклонические кольца океанической циркуляции. Одним из таких круговоротов является система течений в Северной Атлантике, включающая Канарское, Северное Пассатное, Гольфстрим и Северо-Атлантическое течения. Общий центр этой системы располагается в Саргассовом море. Нагревателями этой машины являются Канарское течение и часть Северного Пассатного течения до тех пор, пока температура воды, переносимая течениями, ниже, чем в окружающих водах Атлантического океана, поэтому тепло устремляется от окружающих вод к течению.
Географической машиной пятого рода В.В.Шулейкин назвал систему тропического циклона (урагана или тайфуна). Условия его зарождения требуют, чтобы среди относительно прохладного (для тропических широт) океана встретился относительно теплый участок с более разогретой водной поверхностью (например, вблизи архипелага или атолла), над которым устанавливается восходящее движение теплого и влажного неустойчивого воздуха. Тропический циклон представляет собой замкнутый «энергетический насос», посредством которого энергия Мирового океана передается в атмосферу и пространственно перемещается. Каждое такое образование перекачивает до нескольких десятков кубических километров воды в форме водяного пара и соответствующее количество энергии фазового перехода, которая выделяется, когда водяной пар конденсируется, и тратится на механическую работу и нагревание атмосферного воздуха. Для саморазвития тропический циклон должен горизонтально смещаться. Покидая теплую подстилающую поверхность, он лишается достаточного количества внешней энергии и ослабевает.
Тепловую машину шестого рода образуют синоптические вихри, развивающиеся в океанах на границах течений и являющиеся физическим аналогом циклонов и антициклонов атмосферы. Такие вихри (ринги) были обнаружены еще в 30-х годах XX в. вдоль восточной границы Гольфстрима, но основательно их стали изучать с помощью современных космических и океанографических средств. По характеру вращения синоптические вихри бывают циклоническими и антициклоническими. Условием для образования вихря является неустойчивость циркуляции на периферии основного течения, способствующая его меандрированию. По мере усиления пограничного течения, меандр отпочковывается в вихрь, существующий самостоятельно в течение нескольких дней, недель и даже месяцев (в истории известны вихри, наблюдавшиеся до полутора лет). Средний диаметр океанских вихрей синоптического масштаба составляет 100 км, время жизни — до трех месяцев. Влияние вихря прослеживается до глубины 1500 м. Существуют предположения, что вихри охватывают всю толщу вод Мирового океана. Синоптические вихри воздействуют на теплообмен океана с атмосферой (считается, что именно в этом диапазоне частот энергия атмосферы передается в океан), тепловое поле океанического дна, а также на термическую, физическую, химическую и биологическую структуры вод.
Что определяет распределение тепла на земле
Также в атмосфере содержатся SO2, СН4, NH3, СО, углеводороды, НС1, HF, пары Hg, I2, а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твердых и жидких частиц (аэрозоль).
Погода и климат взаимосвязаны, но стоит определить разницу между ними.
Измерение температуры проводится на метеорологических станциях несколько раз в день, после чего выводят среднесуточную, среднемесячную или среднегодовую температуры.
Колебания температуры
Распределение света, тепла и влаги по земной поверхности Земли
По поверхности шарообразной Земли солнечное тепло и свет распределяются неравномерно. Это объясняется тем, что угол падения лучей на разных широтах разный.
Земная ось наклонена к плоскости орбиты под углом. Своим северным концом она направлена в сторону Полярной звезды. Солнце всегда освещает половину Земли. При этом более освещается то Северное полушарие (и день там длится дольше, чем в другом полушарии), то, наоборот, Южное. Дважды в год оба полушария бывают освещены одинаково (тогда и продолжительность дня в обоих полушариях одинакова).
Солнце является основным источником тепла и света на Земле. Этот огромный газовый шар с температурой на поверхности около 6000° С излучает большое количество энергии, которую называют солнечной радиацией. Она нагревает нашу Землю, приводит в движение воздух, образует круговорот воды, создает условия для жизни растений и животных.
Проходя через атмосферу, часть солнечной радиации поглощается, часть рассеивается и отражается. Поэтому поток солнечной радиации, приходя к поверхности Земли, постепенно ослабевает.
Солнечная радиация поступает на поверхность Земли прямой и рассеянной. Прямая радиация представляет поток параллельных лучей, идущих непосредственно от диска Солнца. Рассеянная радиация поступает со всего небосвода. Считается, что поступление тепла от Солнца на 1 га Земли равнозначно сжиганию почти 143 тыс. т угля.
Солнечные лучи, проходя через атмосферу, мало ее нагревают. Нагревание атмосферы происходит от поверхности Земли, которая, поглощая солнечную энергию, превращает ее в тепловую. Частицы воздуха, соприкасаясь с нагретой поверхностью, получают тепло и уносят его в атмосферу. Так нагреваются нижние слои атмосферы. Очевидно, чем больше получает поверхность Земли солнечной радиации, тем сильнее она нагревается, тем сильнее нагревается от нее воздух.
Распределение осадков на земном шаре зависит от того, сколько облаков, содержащих влагу, образуется над данной территорией или сколько их может принести ветер. Очень важна температура воздуха, потому что интенсивное испарение влаги происходит именно при высокой температуре. Влага испаряется, поднимается вверх и на определенной высоте образуются облака.
Температура воздуха убывает от экватора к полюсам, следовательно, и количество выпадающих осадков максимально в экваториальных широтах и уменьшается к полюсам. Однако на суше распределение осадков зависит от целого ряда дополнительных факторов.
Океаны, температура воды которых меняется гораздо медленнее, чем температура земной поверхности или воздуха, оказывают на климат сильное смягчающее воздействие. Ночью и зимой воздух над океанами остывает значительно медленнее, чем над сушей, а если океанические воздушные массы перемещаются над материками, это приводит к потеплению. И наоборот, днем и летом морской бриз охлаждает сушу.
Распределение влаги на земной поверхности определяется круговоротом воды в природе. Каждую секунду в атмосферу, главным образом с поверхности океанов, испаряется огромное количество воды. Влажный океанический воздух, проносясь над материками, охлаждается. Затем влага конденсируется и возвращается на земную поверхность в форме дождя или снега. Частично она сохраняется в снежном покрове, реках и озерах, а частично возвращается в океан, где снова происходит испарение. Таким образом завершается гидрологический цикл.
На распределение осадков влияют и течения Мирового океана. Над районами, вблизи которых проходят теплые течения, количество осадков увеличивается, так как от теплых водных масс воздух нагревается, он поднимается вверх и образуются облака с достаточной водностью. Над территориями, рядом с которыми проходят холодные течения, воздух охлаждается, опускается вниз, облака не образуются, и осадков выпадает значительно меньше.
Поскольку вода играет существенную роль в эрозионных процессах, она тем самым влияет на движения земной коры. А любое перераспределение масс, обусловленное такими движениями в условиях вращающейся вокруг своей оси Земли, способно, в свою очередь, внести вклад в изменение положения земной оси. Во время ледниковых эпох уровень моря понижается, так как вода аккумулируется в ледниках. Это, в свою очередь, приводит к разрастанию материков и увеличению климатических контрастов. Сокращение речного стока и понижение уровня Мирового океана препятствуют достижению теплыми океаническими течениями холодных регионов, что ведет к дальнейшим климатическим изменениям.