Что описывает сквозные технологии
Сквозные цифровые технологии
Вы будете перенаправлены на Автор24
Сквозные цифровые технологии — это передовые научно-технические отрасли, наиболее сильно влияющие на развитие экономики.
Главные сквозные цифровые технологии
Под цифровой экономикой понимаются экономические, социальные и культурные взаимоотношения, основанием которых является применение цифровой технологии. Цифровую экономику ещё называют экономикой на базе интернета. Этот термин можно отнести к кардинальным переменам, которые вызвали цифровые вычислительные и коммуникационные технологии в экономике во второй половине двадцатого века.
К сквозным цифровым технологиям относятся:
Характеристика основных сквозных цифровых технологий
Большие данные.
Под большими данными понимаются очень большие массивы информационных данных с достаточно большим разнообразием, которые могут иметь или не иметь оформленную структуру и которые могут обрабатываться программными средствами с горизонтальным масштабированием, возникшими примерно десять лет назад как альтернатива стандартным системам работы с базами данных. В обобщённой трактовке «большие данные» являются социальным и экономическим феноменом, который связан с возникновением технологий анализа огромных объёмов информации в отдельных проблемных сферах и возникающих при этом проблем. Под термином большие данные понимается не просто обработка больших информационных объёмов, нечто гораздо более объёмное. Суть проблематики заключается не в создании громадных объёмов данных, а в их структурном оформлении, которое не соответствует общепринятому формату баз данных.
Нейротехнологии.
Приведём два определения нейротехнологии:
Готовые работы на аналогичную тему
С точки зрения нейротехнологии мозг является нейросетью, которая по сути есть набор связанных нейронов. Нейроны бывают двух типов:
«Мокрые» расположены у человека в голове, а «сухие» — это модули нейронных сетей с наличием у них режима самообучения и способности решать самые сложные проблемы.
Искусственный интеллект.
Сегодня искусственным интеллектом считаются некоторые алгоритмы и программы, которые способны разрешать отдельные задачи подобно думающим людям. Главные качества искусственного интеллекта заключаются в умении понимать язык, обучаться, думать и даже выполнять конкретные действия. Искусственный интеллект развивается по двум основным направлениям:
Блокчейн.
Блокчейн представляет собой цепочки блоков, то есть это база данных, которая разбита на отдельные блоки и у которой память данных не соедина с единым сервером. Эта база сохраняет непрерывно возрастающий перечень вложений, имеющих определённый порядок и обозначаемых как блоки. Все блоки имеют метки и ссылки на блок, идущий ранее. Использование шифров даёт гарантию того, что изменены, могут быть лишь те элементы цепочек блоков, на которые у пользователя есть ключи шифрования. То есть блокчейн технология уже в своей основе имеет обеспечение безопасности всех баз информационных данных. Идею блокчейна сформулировал в 2008м году Сатоши Накамото, а её практическая реализация была осушествлена в 2009м году применительно к криптовалюте биткоин. Там блокчейн выступает в роли основного общего реестра для всех действий с криптой.
Квантовые технологии.
Под квантовой технологией понимается раздел физики, в котором применяются уникальные свойства квантовой механики и в первую очередь квантовая запутанность. Основные квантовые принципы, применяемые в квантовых технологиях:
Вероятные реализации этих принципов ожидаются в категориях квантовых вычислений и квантовых компьютеров.
Новые производственные технологии.
Под новыми производственными технологиями понимается набор процессов по проектированию и изготовлению на уровне современных технологий, которые индивидуальны для продуктов разной сложности, себестоимость которых аналогична себестоимости продуктов в обычной промышленности.
Промышленный интернет.
Основной движущей силой развития «Промышленного интернета» выступает высокая эффективность действующих технологических процессов, уменьшение расходов. Освободившиеся вследствие этого средства фирм, создают необходимость в решениях в области промышленного интернета. Распространение технологий промышленного интернета существенно влияет на экономические показатели фирм и государства в целом.
Робототехника.
Робототехникой называется наука, которая занимается проектированием автоматических технологических систем и является очень важным техническим основанием современного производства.
Технологии сенсорики.
Набор датчиков (сенсорика роботов), как правило, является аналогом человеческих органов чувств.
Технологии беспроводной связи.
Передача данных без использования проводов широко распространена сегодня, это Bluetooth, Wi-Fi и, наконец, просто сотовая мобильная связь.
Виртуальная реальность.
Мировосприятие, создаваемое аппаратными и программными средствами, называется виртуальной реальностью. Человек воспринимает её через свои органы чувств, но она только создаёт имитацию воздействий.
Развитие цифровых сквозных технологий
Понятие сквозные применено в связи с тем, что эти технологии не связаны с каким-то отдельным продуктом или сферой деятельности, а могут применяться во многих индустриях, отраслях и секторах экономики, например, в образовании, медицине, энергетике, строительстве, сельском хозяйстве, машиностроении и т.д.
Государство в отношении сквозных цифровых технологий выступает в двух ролях:
Сквозные технологии универсальны, используются не только в частном (коммерческом), но и в государственном секторе экономики. Поэтому применение сквозных технологий является одной из профессиональных компетенций участника команды цифровой трансформации в государственном управлении. Государственная поддержка по стимулированию развития сквозных технологий осуществляется в рамках федерального проекта «Цифровые технологии» национальной программы «Цифровая экономика РФ».
Цель проекта «Цифровые технологии» – обеспечение технологической независимости России, возможности коммерциализации отечественных разработок, ускорение технологического развития российских компаний, обеспечение конкурентоспособности разрабатываемых ими продуктов и решений на глобальном рынке.
В программе «Цифровая экономика Российской Федерации», утвержденной премьер-министром России Дмитрием Медведевым в 2017 году и ныне уже не действующей, был приведен перечень основных сквозных цифровых технологий: большие данные, нейротехнологии и искусственный интеллект, системы распределенного реестра, квантовые технологии, новые производственные технологии, промышленный интернет, компоненты робототехники и сенсорика, технологии беспроводной связи, технологии виртуальной и дополненной реальностей.
В новой национальной программе «Цифровая экономика Российской Федерации», утвержденной в конце 2018 года, перечень сквозных технологий не приводится, но в рамках федерального проекта «Цифровые технологии» были разработаны дорожные карты по развитию сквозных цифровых технологий. Правительственная комиссия по цифровому развитию под председательством вице-премьера Максима Акимова одобрила семь дорожных карт по развитию сквозных технологий цифровой экономики. Ниже представлены семь технологий и входящие в них субтехнологии, описанные в дорожных картах.
Власти объяснили, что такое сквозные проекты в электронике, на которые они выделяют десятки миллиардов
Постановлением Правительства разъяснено, какие проекты называются сквозными и могут претендовать на субсидии до 4 млрд руб. в год. В том числе, документом установлено понятие якорного заказчика такого проекта. В октябре 2021 г. Правительство разработало правила создания и управления ими.
Сквозные проекты
Так, согласно документу, сквозной проект — это комплекс взаимоувязанных мероприятий, направленных на внедрение программно-аппаратных комплексов или систем интеллектуального управления. Он включает, в том числе, организацию производства продукции, проведение научно-исследовательских и опытно-конструкторских работ по разработке радиоэлектронной продукции, создание встроенного ПО, адаптацию существующего софта, а также мероприятия, связанные с выводом продукции на рынок с гарантированным объемом ее потребления. При этом данный объем должен превышать сумму затрат на указанные мероприятия.
Также в документе говорится, что продукция сквозного проекта может применяться различными потребителями, в том числе, в других отраслях экономики. В то же время именно якорный заказчик выступает основным потребителем продукции сквозного проекта, следует из постановления.
«В настоящее время мы увязываем в единую систему различные меры поддержки радиоэлектронной отрасли и в центре этой системы должны стоять «сквозные проекты»», — пояснил CNewsзамглавы Минцифры Андрей Заренин. В том числе, документ определяет алгоритм расчета рейтинга заявок на получение субсидии.
«Именно поэтому уже существующие постановления дополняются новым критерием, важным с точки зрения получения субсидии — реализация субсидируемого проекта как части «сквозного проекта», — добавляет Заренин. — Фактически комплексные проекты, включенные в состав «сквозных проектов», получают дополнительный коэффициент 1,2 к заявке, что повышает их шансы на успешный отбор для получения субсидии».
Как отбирают сквозные проекты
В октябре 2021 г. Правительство разработало правила создания и управления сквозными проектами по внедрению российской радиоэлектронной продукции и ПО. Так, согласно документу, объем реализации проекта должен быть не менее 500 млн руб. При этом 90% от этой стоимости должно быть потрачено на закупку российской радиоэлектронной продукции.
Документ также устанавливает множество требований и к якорным заказчикам сквозных проектов. Среди них — доля собственных и заемных средств якорного заказчика должна быть не менее 51% от общей стоимости проекта. Он должен быть российским юрлицом, общее участие иностранных лиц в капитале которого прямо или опосредовано не превышает в совокупности 25%. В его штате должно быть не менее 1 тыс. сотрудников, которые непосредственно используют радиоэлектронную продукцию или ПО. При этом продукция заказчика должна использоваться для оказания основных услуг организации или для управления собственной производственной инфраструктурой.
Как рассматриваются сквозные проекты
Субсидии на сквозные проекты
В сентябре 2021 г. Правительство утвердило правила предоставления субсидий на реализацию сквозных проектов. Так, компании, которые реализуют проекты по внедрению российской электронной продукции, получат до 4 млрд руб. в год. Однако сама организация должна вложить в него не менее 100 млн руб. собственных средств за весь период — до пяти лет. Соответственно предельная сумма госфинансирования по таким проектам может достигнуть 20 млрд руб. Также компания должна взять на себя обязательство, в соответствии с которым доля российской электроники в общем объеме ее проекта составит не менее 70%, говорится в документе.
Бизнес также сможет возместить до 50% затрат на покупку российских решений за счет федеральных субсидий. Деньги, в частности, можно направить на покупку продукции и комплектующих, модернизацию производства, а также переобучение сотрудников.
Цифровая экономика — это система экономических, социальных и культурных отношений, основанных на использовании цифровых технологий. Иногда её называют интернет-экономикой, новой экономикой или веб-экономикой.
Развитие цифровой экономики началось с цифровой революции. Цифровая революция — это переход от механической и аналоговой электронной технологии к цифровой электронике, которая появилась в конце 1950-х годов.
Термин также относится к радикальным изменениям, вызванным цифровыми вычислительными и коммуникационными технологиями во второй половине XX века. Аналогично сельскохозяйственной и промышленной революциям, цифровая ознаменовала начало новой, но уже цифровой, эры.
Сквозными технологиями цифровой экономики являются большие данные, нейротехнологии, искусственный интеллект, системы распределённого реестра (блокчейн), квантовые технологии, новые производственные технологии, промышленный интернет, робототехника, сенсорика, беспроводная связь, виртуальная и дополненная реальности.
Большие данные
Большие данные (англ. big data) — обозначение структурированных и неструктурированных данных огромных объёмов и значительного многообразия, эффективно обрабатываемых горизонтально масштабируемыми (scale-out) программными инструментами, появившимися в конце 2000-х годов и альтернативных традиционным системам управления базами данных и решениям класса Business Intelligence.
В широком смысле о «больших данных» говорят как о социально-экономическом феномене, связанном с появлением технологических возможностей анализировать огромные массивы данных, в некоторых проблемных областях — весь мировой объём данных, и вытекающих из этого трансформационных последствий.
Большие данные предполагают нечто большее, чем просто анализ огромных объемов информации. Проблема не в том, что организации создают огромные объемы данных, а в том, что бóльшая их часть представлена в формате, плохо соответствующем традиционному структурированному формату БД, — это веб-журналы, видеозаписи, текстовые документы, машинный код или, например, геопространственные данные. Всё это хранится во множестве разнообразных хранилищ, иногда даже за пределами организации. В результате корпорации могут иметь доступ к огромному объему своих данных и не иметь необходимых инструментов, чтобы установить взаимосвязи между этими данными и сделать на их основе значимые выводы. Добавьте сюда то обстоятельство, что данные сейчас обновляются все чаще и чаще, и вы получите ситуацию, в которой традиционные методы анализа информации не могут угнаться за огромными объемами постоянно обновляемых данных, что в итоге и открывает дорогу технологиям больших данных.
Нейротехнологии
1. совокупность технологий, созданных на основе принципов функционирования нервной системы;
2. основа для создания нового класса глобально конкурентноспособных технологий, необходимых для развития новых рынков, продуктов, услуг, в числе – направленных на увеличение продолжительности и качества жизни.
Нейротехнологии рассматривают мозг как нейросеть, то есть совокупность соединенных между собой нейронов. Нейронные сети можно разделить на два типа: «мокрые» и «сухие». «Мокрые» — биологические нейронные сети, которые находятся у нас в голове, а «сухие» — искусственные; математические модели, построенные по принципу биологических нейронных сетей, способные решать весьма сложные задачи и самообучаться.
Наиболее перспективные отрасли нейротехнологий:
Нейрофармакология. Развитие генной и клеточной терапии, ранняя персонализированная диагностика, лечение и предотвращение нейродегенеративных заболеваний (старческое слабоумие, болезнь Альцгеймера и т. д.), а также улучшение умственных способностей у здоровых людей.
Нейромедтехника. Развитие нейропротезирования органов, включая искусственные органы чувств, разработка средств для реабилитации с применением нейротехнологий, которые помогают разрабатывать утратившую подвижность конечность.
Нейрообразование. Развитие нейроинтерфейсов и технологий виртуальной и дополненной реальности в обучении, разработка образовательных программ и устройств, создание устройств для усиления памяти и анализа использования ресурсов мозга.
Нейроразвлечения и спорт. Развитие брейн-фитнеса — упражнений для мозга, создание игр с использованием нейрогаджетов, в том числе нейроразвивающих игр.
Нейрокоммуникации и маркетинг. Развитие технологий нейромаркетинга (комплекса методов изучения поведения покупателей, возможностей воздействия на него, а также реакций на подобное воздействие с использованием нейротехнологий), прогнозирование поведения на основе нейро- и биометрических данных.
Нейроассистенты. Развитие технологии понимания естественного языка, разработка глубокого машинного обучения (машинного обучения, основанного на нейросетях, которые помогают усовершенствовать такие алгоритмы, как распознавание речи, компьютерное зрение и обработка естественного языка), создание персональных электронных ассистентов (веб-сервисов или приложений, исполняющих роль виртуального секретаря) и гибридного человеко-машинного интеллекта.
Искусственный интеллект
Искусственный интеллект (ИИ; англ. Artificial intelligence, AI) — (1) наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ; (2) свойство интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека.
Сейчас к ИИ относят ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.
Основные свойства ИИ — это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.
AI – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:
Это помогает выстроить качественно новый клиентский опыт и процесс взаимодействия.
Можно выделить два направления развития ИИ:
Экосистема искусственного интеллекта
—
Cферы применения технологий искусственного интеллекта
—
Технологические направления ИИ
Блокчейн
Технология блокчейна — это прорыв с очень серьезными последствиями, которые затронут не только сферу финансов, но и многие другие отрасли.
Блокчейн (цепочка блоков) — это распределенная база данных, у которой устройства хранения данных не подключены к общему серверу. Эта база данных хранит постоянно растущий список упорядоченных записей, называемых блоками. Каждый блок содержит метку времени и ссылку на предыдущий блок.
Применение шифрования гарантирует, что пользователи могут изменять только те части цепочки блоков, которыми они «владеют» в том смысле, что у них есть закрытые ключи, без которых запись в файл невозможна. Кроме того, шифрование гарантирует синхронизацию копий распределенной цепочки блоков у всех пользователей.
В технологию блокчейн изначально заложена безопасность на уровне базы данных. Концепцию цепочек блоков предложил в 2008 г. Сатоши Накамото (Satoshi Nakamoto). Впервые реализована она была в 2009 г. как компонент цифровой валюты — биткоина, где блокчейн играет роль главного общего реестра для всех операций с биткоинами. Благодаря технологии блокчейна биткоин стал первой цифровой валютой, которая решает проблему двойных расходов (в отличие от физических монет или жетонов, электронные файлы могут дублироваться и тратиться дважды) без использования какого-либо авторитетного органа или центрального сервера.
Безопасность в технологии блокчейн обеспечивается через децентрализованный сервер, проставляющий метки времени, и одноранговые сетевые соединения. В результате формируется база данных, которая управляется автономно, без единого центра. Это делает цепочки блоков очень удобными для регистрации событий (например, внесения медицинских записей) и операций с данными, управления идентификацией и подтверждения подлинности источника.
Каждый человек может разместить в Интернете информацию, а затем другие люди могут получить к ней доступ из любой точки мира. Цепочки блоков позволяют отправлять в любую точку мира, где будет доступен файл блокчейна, какие-либо ценности. Но у вас должен быть закрытый ключ, созданный по криптографическому алгоритму, чтобы разрешить вам доступ только к тем блокам, которыми вы «владеете».
Предоставляя кому-либо ваш закрытый ключ, вы по сути передаете этому лицу денежную сумму, которая хранится в соответствующем разделе цепочки блоков.
В случае биткоинов такие ключи используются для доступа к адресам, по которым хранятся некоторые суммы в валюте, представляющие прямую финансовую ценность. Этим реализуется функция регистрации перевода средств, обычно такую роль выполняют банки.
Кроме того, реализуется еще одна важная функция: установка отношений доверия и подтверждение подлинности личности, потому что никто не может изменять цепочку блоков без соответствующих ключей. Изменения, не подтвержденные этими ключами, отклоняются. Конечно, ключи (как и физическая валюта) теоретически могут быть украдены, но защита нескольких строк компьютерного кода обычно не требует больших затрат.
Это означает, что основные функции, выполняемые банками: проверка подлинности личности (для предотвращения мошенничества) и последующая регистрация сделок (после чего они становятся законными) — могут выполняться цепочкой блоков быстрее и точнее.
Технология блокчейн предлагает заманчивую возможность избавиться от посредников. Она может взять на себя все три важные роли, которые традиционно играет сектор финансовых услуг: регистрация сделок, подтверждение подлинности личности и заключение контрактов.
Квантовые технологии
Квантовая технология — область физики, в которой используются специфические особенности квантовой механики, прежде всего квантовая запутанность. Цель квантовой технологии состоит в том, чтобы создать системы и устройства, основанные на квантовых принципах, к которым обычно относят следующие:
К возможным практическим реализациям относят квантовые вычисления и квантовый компьютер, квантовую криптографию, квантовую телепортацию, квантовую метрологию, квантовые сенсоры, и квантовые изображения.
Новые производственные технологии
Новые производственные технологии – это комплекс процессов проектирования и изготовления на современном технологическом уровне кастомизированных (индивидуализированных) материальных объектов (товаров) различной сложности, стоимость которых сопоставима со стоимостью товаров массового производства.
Еще примеры можно найти здесь.
Промышленный интернет
Промышленный интернет (индустриальный интернет вещей, индустриальный интернет, Industrial Internet of Things, IIoT) – концепция построения инфокоммуникационных инфраструктур, подразумевающая подключение к сети Интернет любых небытовых устройств, оборудования, датчиков, сенсоров, автоматизированной системы управления технологическим процессом (АСУ ТП), а также интеграцию данных элементов между собой, что приводит к формированию новых бизнес-моделей при создании товаров и услуг, а также их доставке потребителям.
Ключевым драйвером реализации концепции «Промышленного интернета» является повышение эффективности существующих производственных и технологических процессов, снижение потребности в капитальных затратах. Высвобождающиеся таким образом ресурсы компаний формируют спрос на решения в сфере Промышленного интернета.
В систему интернета вещей сегодня вовлекаются все необходимые для его функционирования звенья: производители датчиков и других устройств, программного обеспечения, системные интеграторы и организации-заказчики (причем как B2B, так и B2G), операторы связи.
Внедрение промышленного интернета оказывает значительное влияние на экономику отдельных компаний и страны в целом, способствует повышению производительности труда и росту валового национального продукта, положительным образом сказывается на условиях труда и профессиональном росте сотрудников. Сервисная модель экономики, которая создается в процессе этого перехода, основывается на цифровизации производства и иных традиционных отраслей, обмене данными между различными субъектами производственного процесса и аналитике больших объемов данных.
Робототехника
Робототехника — прикладная наука, занимающаяся разработкой автоматизированных технических систем и являющаяся важнейшей технической основой интенсификации производства. Робот — это программируемое механической устройство, способное выполнять задачи и взаимодействовать с внешней средой без помощи со стороны человека.
Робототехника опирается на такие дисциплины, как электроника, механика, телемеханика, механотроника, информатика, а также радиотехника и электротехника. Выделяют строительную, промышленную, бытовую, медицинскую, авиационную и экстремальную (военную, космическую, подводную) робототехнику.
Сенсорика
Сенсорика роботов (система чувствительных датчиков) обычно копирует функции органов чувств человека: зрение, слух, обоняние, осязание и вкус. Чувство равновесия и положения тела в пространстве, как функция внутреннего уха, иногда считаются шестым чувством. Функционирование биологических органов чувств базируется на принципе нейронной активности, в то время как чувствительные органы роботов имеют электрическую природу.
Мы можем характеризовать искусственные сенсоры по их отношению к природным органам чувств, но обычно классы сенсорных устройств выделяются по типу воздействия, на которое данный сенсор реагирует: свет, звук, тепло и т. д. Типы сенсоров, встроенных в робота, определяются целями и местом его применения.
Чувствительный элемент датчика сам по себе может называться сенсором. Датчики используются во многих отраслях экономики — добыче и переработке полезных ископаемых, промышленном производстве, транспорте, коммуникациях, логистике, строительстве, сельском хозяйстве, здравоохранении, науке и других отраслях — являясь в настоящее время неотъемлемой частью технических устройств.
В последнее время в связи с удешевлением электронных систем всё чаще применяются датчики со сложной обработкой сигналов, возможностями настройки и регулирования параметров и стандартным интерфейсом системы управления. Имеется определённая тенденция расширительной трактовки и перенесения этого термина на измерительные приборы, появившиеся значительно ранее массового использования датчиков, а также по аналогии — на объекты иной природы, например, биологические.
В автоматизированных системах управления датчики могут выступать в роли инициирующих устройств, приводя в действие оборудование, арматуру и программное обеспечение. Показания датчиков в таких системах, как правило, записываются на запоминающее устройство для контроля, обработки, анализа и вывода на дисплей или печатающее устройство. Огромное значение датчики имеют в робототехнике, где они выступают в роли рецепторов, посредством которых роботы и другие автоматические устройства получают информацию из окружающего мира и своих внутренних органов.
Беспроводная связь
Беспроводная связь (беспроводная передача данных) — связь, которая осуществляется в обход проводов или других физических сред передачи. К примеру, беспроводной протокол передачи данных Bluetooth работает «по воздуху» на небольшом расстоянии. Wi-Fi — еще один способ передачи данных (интернет) по воздуху. Сотовая связь также относится к беспроводной. Хотя протоколы беспроводной связи улучшаются год от года, по своим основным показателям и скорости передачи они пока не обходят проводную связь. Хотя большие надежды на этом поле показывает сеть LTE и её новейшие итерации.
Виртуальная реальность
Виртуальная реальность (ВР, англ. virtual reality, VR, искусственная реальность) — созданный техническими средствами мир (объекты и субъекты), передаваемый человеку через его ощущения: зрение, слух, обоняние, осязание и другие. Виртуальная реальность имитирует как воздействие, так и реакции на воздействие. Для создания убедительного комплекса ощущений реальности компьютерный синтез свойств и реакций виртуальной реальности производится в реальном времени.
Объекты виртуальной реальности обычно ведут себя близко к поведению аналогичных объектов материальной реальности. Пользователь может воздействовать на эти объекты в согласии с реальными законами физики (гравитация, свойства воды, столкновение с предметами, отражение и т. п.). Однако часто в развлекательных целях пользователям виртуальных миров позволяется больше, чем возможно в реальной жизни (например: летать, создавать любые предметы и т. п.).
Системами «виртуальной реальности» называются устройства, которые более полно по сравнению с обычными компьютерными системами имитируют взаимодействие с виртуальной средой, путём воздействия на все пять имеющихся у человека органов чувств.
Применение: компьютерные игры, обучение, видео.
Дополненная реальность
Дополненная реальность (англ. augmented reality, AR — «дополненная реальность») — результат введения в поле восприятия любых сенсорных данных с целью дополнения сведений об окружении и улучшения восприятия информации.
Дополненная реальность — воспринимаемая смешанная реальность (англ. mixed reality), создаваемая с использованием «дополненных» с помощью компьютера элементов воспринимаемой реальности (когда реальные объекты монтируются в поле восприятия).
Среди наиболее распространенных примеров дополнения воспринимаемой реальности — параллельная лицевой цветная линия, показывающая нахождение ближайшего полевого игрока к воротам при телевизионном показе футбольных матчей, стрелки с указанием расстояния от места штрафного удара до ворот, «нарисованная» траектория полета шайбы во время хоккейного матча, смешение реальных и вымышленных объектов в кинофильмах и компьютерных или гаджетных играх и т. п.
Существует несколько определений дополненной реальности: исследователь Рональд Азума (англ. Ronald Azuma) в 1997 году определил её как систему, которая:
Применение: кинематография, телевидение, мобильные технологии, медицина, военная техника, компьютерные игры, полиграфия.