Что оказывает влияние на величину зерен
Размер зерна и его влияние на свойства материалов (металлов).
Имея подобный вид структуры, можно судить о расположении, форме и величине зерен, составляющих металл, и даже давать количественную оценку размерам зерен, т. е. определять их величину.
Эту величину принято характеризовать обычно средней площадью сечения каждого зерна, поскольку на шлифах наблюдаются всегда только сечения зерен, а не их пространственные размеры.
Полагая в общем случае, что все зерна одинаковы и в среднем могут быть уподоблены шарам (равноосны), для определения их величины измеряют некоторую площадь наблюдаемой структуры F и подсчитывают число N сечений зерен, наблюдаемых на этой площади. Частное от деления ^- будет представлять среднюю величину
зерна, выражаемую чаще всего в квадратных микронах (р.2).
Подробности об измерении зерен в металлах даются в практических руководствах. Следует отметить лишь примерные масштабы для суждения о размерах зерен. Весьма мелкие зерна (м и к р о-скопические, примерно, как изображенные на фиг. 23) имеют размеры порядка нескольких сот квадратных микрон; зерна крупные, макроскопические, можно выражать уже квадратными миллиметрами (10°р-2) и более.
Иногда величину зерен характеризуют средним диаметром, уподобляя их внешнюю форму шару. Размер зерна имеет весьма существенное влияние на свойства металла. В практике уже давно замечено, что крупные зерна большей частью сопровождаются пониженным механическим качеством металла; могут изменяться и прочие свойства, что находит объяснение отчасти в большем или меньшем развитии границ между зернами-кристаллами.
Влияние границ зерен на свойства металла в целом сказывается прежде всего в том, что эти границы являются поверхностями раздела зерен, в которых частицы (атомы) самого металла уже энергетически отличны от атомов, расположенных в решетке внутри зерна. Полагают, что частицы между зернами обладают повышенной энергией, представляющей поверхностную энергию, которая играет большую роль в явлениях, происходящих в различных телах и, в том числе, в металлах и их сплавах.
Таким образом, даже если представить себе абсолютно чистый металл, то и в нем должна существовать прослойка между зернами в циде неопределенно расположенных атомов, которую некоторые рассматривают как аморфную пленку металла и которая может влиять на свойства всего куска металла в целом.
Но помимо таких пленок, состоящих из атомов самого металла, в практически применимых металлах всегда имеются примеси, которые также могут расположиться в промежутках между зернами в виде пленок или включений и оказывать влияние на свойства металла.
Например, если эти пленки непрочны (хрупки), связь между зернами будет ослаблена, и разрушение металла при механическом воздействии произойдет по границам зерен. В этом случае будет наблюдаться межкристаллический излом металла (или интергранулярный).
Может быть и такой случай, когда прослойки между зернами окажутся прочнее самих зерен; тогда разрушение произойдет внутри самих зерен и будет виден в и утрикр металлический излом (или и н т р а г р а н у л я р н ы й).
Таким образом большее или меньшее развитие границ зерен должно оказывать влияние на металл. Так как это развитие границ определяется размерами зерна, то на последние должно быть обращено внимание при исследовании металлов.
Обработка металлов резанием. Формообразование поверхности металлов.
Обработка металлов резанием, технологические процессы обработки металлов путём снятия стружки, осуществляемые режущими инструментами на металлорежущих станках с целью придания деталям заданных форм, размеров и качества поверхностных слоев. Основные виды О. м. р.: точение,строгание, сверление, развёртывание, протягивание, фрезерование и зубофрезерование, шлифование, хонингование и др. Закономерности О. м. р. рассматриваются как результат взаимодействия системы станок — приспособление — инструмент — деталь
Пространственную конструктивную форму любой детали определяет сочетание различных поверхностей. Для облегчения обработки заготовки конструктор стремится использовать следующие геометрические поверхности: плоские, круговые цилиндрические и конические, шаровые, торовые, геликоидные и др. Любая геометрическая поверхность представляет собой совокупность последовательных положений (следов) одной производящей линии, называемой образующей, движущейся по другой производящей линии, называемой направляющей. Например, для образования круговой цилиндрической поверхности необходимо прямую линию (образующую) перемещать по окружноети (направляющей).
При обработке поверхностей на металлорежущих станках образующие и направляющие линии в большинстве случаев являются воображаемыми. Они воспроизводятся во времени комбинацией движений заготовки и инструмента, скорости которых строго согласованы между собой. Движения резания являются также формообразующими движениями. Механическая обработка заготовок деталей машин реализует в основном четыре метода формообразования поверхностей. Рассмотрим их на конкретных примерах.
Получение поверхностей по методу копирования состоит в том, что режущая кромка инструмента является реальной образующей линией 1, форма которой совпадает или обратна той, которая является образующей линией поверхности детали (рис. 48, а). Направляющая линия 2 воспроизводится во времени вращением заготовки. Главное движение здесь является формообразующим. Движение подачи необходимо для того, чтобы получить геометрическую поверхность определенного размера. Метод копирования широко используют при обработке фасонных поверхностей деталей на различных металлорежущих станках.
Образование поверхностей по методу следов состоит в том, что образующая линия 1 является траекторией движения точки (вершины) режущей кромки инструмента, а направляющая линия 2- траекторией движения точки заготовки (рис. 48, б). Здесь движения резания являются формообразующими. Этот метод формообразования поверхностей деталей распространен наиболее широко.
Резцы и их геометрия.
Различают токарные резцы:
проходные – для обтачивания наружных цилиндрических и конических поверхностей;
расточные – проходные и упорные – для растачивания глухих и сквозных отверстий;
отрезные – для отрезания заготовок;
резьбовые – для нарезания наружных и внутренних резьб;
фасонные – для обработки фасонных поверхностей;
прорезные – для протачивания кольцевых канавок;
галтельные – для обтачивания переходных поверхностей между ступенями валов по радиусу.
Головка резца имеет следующие элементы: переднюю поверхность, задние поверхности, режущие кромки и вершину.
Передней поверхностью называется поверхность резца, по которой сходит стружка.
Задними поверхностями называются поверхности резца, обращенные к обрабатываемой заготовке (главная и вспомогательная).
Режущие кромки образуются пересечением передней и задних поверхностей; их две — главная режущая кромка и вспомогательная.
Главная режущая кромкавыполняет основную работу резания. Она образуется от пересечения передней и главной задней поверхностей.
Вспомогательная режущая кромкаобразуется от (пересечения передней и вспомогательной задней поверхностей.
Вершина резцаэто место сопряжения главной и вспомогательной режущих кромок.
Измерение углов осуществляется по отношению к основной плоскости и плоскости резания.
Основной плоскостьюназывается плоскость, параллельная направлениям продольной и поперечной подач. У токарных резцов с призматическим телом за эту плоскость может быть принята нижняя опорная поверхность резца.
Плоскостью резанияназывается плоскость, перпендикулярная к основной и проходящая через режущую кромку резца, по касательной к поверхности резания.
Дата добавления: 2018-05-13 ; просмотров: 3963 ; Мы поможем в написании вашей работы!
Влияние размера зёрен на свойства стали
Па свойства стали влияет только действительный размер зерна, наследственный размер зерна влияния не оказывает. Если у двух сталей одной марки (одна наследственно крупнозернистая, другая наследственно мелкозернистая) при различных температурах термических обработок будет получен одинаковый действительный размер зерна, то свойства их будут одинаковыми. Если же размер зерна будет различный, то существенно будут различаться многие свойства стали. Надо отметить, что любое легирование, обусловливающее торможение диффузионных процессов будет сдерживать рост зерна, который контролируется диффузией. Следует отмстить, что термины — наследственно крупнозернистая и наследственно мелкозернистая сталь не обозначают того, что данная сталь имеет всегда крупное или всегда мелкое зерно. Наследственное зерно, полученное в стандартных условиях технологической пробы (рис. 96), указывает лишь на то, что при нагреве до определенных температур наследственно крупнозернистая сталь приобретает относительно более крупное зерно при более низкой температуре, чем сталь мелкозернистая. По склонности к росту зерна различают два предельных типа сталей: наследственно мелкозернистые и наследственно крупнозернистые. Наследственное зерно, полученное в стандартных условиях технологической пробы, указывает лишь на то, что при нагреве до определенных температур наследственно крупнозернистая сталь приобретает крупное зерно при более низкой температуре, чем наследственно мелкозернистая сталь.
Обрабатываемость резанием стали с преобладающим количеством в микроструктуре феррита повышается при укрупнении зерна, что обеспечивается нормализацией с высоких температур. Наилучшей структурой для обрабатываемости резанием стали с преобладающим количеством в микроструктуре перлита является структура пластинчатого перлита с тонкой разорванной сеткой, получаемая в результате специального отжига или нормализации с последующим отпуском при 720° С. Наилучшей структурой для обрабатываемости резанием высокоуглеродистой стали (шарикоподшипниковой) является структура мелкозернистого (точечного) перлита [2]. Для грубой обдирки, для которой чистота обработки не имеет существенного значения, наиболее подходящей является „наследственно» крупнозернистая сталь. Мелкозернистая (номера зерна 5—8 по шкале ASTM) вязкая сталь является наиболее подходящей для цементации и чистовой обработки [7]. Горяче- и холоднокатаная и волочёная углеродистая сталь с содержанием углерода выше 0,40/0 и легированная с содержанием углерода выше 0,3% для улучшения обрабатываемости должна подвергаться отжи-гу [8]. Сталь, раскисленная только ферромарганцем (кипящая сталь) или ферромарганцем и ферросилицием, — наследственно крупнозернистая сталь, а сталь, дополнительно раскисленная алюминием, — мелкозернистая.
Поэтому для определения зернистости необходимо знать зависимость размера зерна от температуры. Практически, однако, удобнее наследственную зернистость определять лишь размером зерна (соответствующим номером шкалы, рис. 182,а, • причем предварительно сталь должна быть нагрета до таких температур, при которых у наследственно мелкозернистой стали зерно еще не начнет расти (см. рис. 178), а у наследственно крупнозернистой стали уже вырастает.. Для обычных сортов конструкционной стали — эта температура 930°С. Стали, у которых при этой температуре номер зерна 1—4, принято считать наследственно крупнозернистыми, а стали с номером зерна 5—8 — наследственно мелкозернистыми. Наследственно мелкозернистая сталь не склонна к перегреву, т. е. интенсивный рост зерен начинается при значительно более высокой температуре, чем у наследственно крупнозернистой. Поэтому интервал температур закалки у наследственно мелкозернистых сталей значительно шире, чем у наследственно крупнозернистых. В наследственно мелкозернистой стали при нагреве до высоких температур (1000—1050°С) зерно увеличивается незначительно, однако при более высоком нагреве наступает бурный рост зерна. В наследственно крупнозернистой стали, наоборот, сильный рост зерна наблюдается даже при незначительном перегреве выше Act (рис, 107). Различная склонность к росту зерна определяется условиями раскисления стали и ее составом. Механические свойства стали (ударная вязкость, предел усталости и другие) зависят только от величины действительного зерна стали, т. е. падение идет быстро и при 650° временное сопротивление составляет около а/5 начальной величины. В отношении коррозии ковкий чугун считается наиболее устойчивым по сравнению с серым чугуном и сталью. Его поверхность — обычно ровная и гладкая — состоит из чистого феррита и потому, как совершенно однородная, она не дает в электролите микропар вследствие разности потенциалов отдель ных точек на поверхности. Такая однородная поверхность легко покрывается цинком, оловом, что невозможно для изделий из серого чугуна.Испытание отливок ковкого чугуна. Технические условия определяются ОСТ/НКТП 8826/2177. Поверка качеств отливок производится:а) наружным осмотром, обмером;б) испытанием контрольных образцов для определения временного сопротивления на разрыв и относительного удлинения;в) испытанием на твердость;г) проверкой отливок на качество отжига по виду излома;д) испытанием отливок на микроструктуру.Испытание на твердость производится на отливках в. местах, подлежащих обработке, для чего необходимо предварительно снять поверхность отливки в местах испытания не менее чем на 1 мм. Твердость по Бринелю определяется шариком диаметром 5 мм под нагрузкой 750 кг, время действия нагрузки не менее 10 сек. Количество отливок, отбираемых для испытания на твердость, определяется соглашением заказчика с заводом-изготовителем.Испытание изломом. Отливки весом более 5 кг, если конфигурация позволит, должны иметь специальные приливы (ушки) толщиной, соответствующей средней толщине отливки, но не более 16 х 19 мм. В отливках длиной > 600 мм такие приливы должны быть у каждого конца; ушки должны быть расположены в местах, допускающих свободный их отлом приемщиком.
Вопрос25
Рост зерна аустенита при нагреве.
Размер аустенитного зерна – важнейшая структурная характеристика нагретой стали. От размера зерна аустенита зависит поведение стали в различных процессах термомеханической обработки и механические свойства изделия.
Особенно чувствительна к размеру аустенитного зерна ударная вязкость, которая падает заметно с укрупнением зерна.
На сильно развитой ферритно- цементитной поверхности раздела стали при нагреве выше АС1 (АC3, Аcm) образуется большое число центров превращения – зародышей аустенита, и к концу превращения аустенитные зерна получаются мелкими. Эти зерна называются начальными зернами. При дальнейшем нагреве эти зерна аустенита растут, причем разные стали характеризуются различной склонностью к росту зерна. По склонности к росту зерна аустенита при нагреве различают наследственно мелкозернистые и наследственно крупнозернистые стали. Наследственно крупнозернистые стали начинают быстро увеличивать размер зерен даже при небольшом перегреве выше АС1 (АС3, Аcm), а наследственно мелкозернистые — даже при значительном перегреве сохраняют относительно мелкое зерно (рис. 8.3).
С другой стороны, склонность к росту зерна стали сильно зависит от ее металлургического качества, технологии ее производства и режима раскисления, так как они определяют наличие в стали разного количества мельчайших примесей карбидов, оксидов, сульфидов и нитридов, также затрудняющих рост зерна.
Для определения склонности стали к росту зерна используется стандартная методика, которая заключается в следующем. Доэвтектоидную сталь цементуют при 930 °C в течение 8 частов с последующим медленным охлаждением. Размер зерна определяется по карбидной сетке, окаймляющей границы аустенитных зерен. Заэвтектидную сталь нагревают до 930 °C и после выдержки в течение 3 ч медленно охлаждают. Размер зерна определяется по сетке вторичных карбидов, выделяющихся по границам аустенитных кристаллов. Другой метод состоит в окислительном нагреве шлифа в течение 3 часов при 930 °C. Границы зерен аустенита выявляются сеткой оксидов.
От склонности к росту зерна зависит технологический процесс горячей деформации и термообработки. Наследственно мелкозернистые стали имеют большой интервал закалочных температур, их прокатка и ковка могут начинаться при более высоких температурах.
При нагреве до достаточно высокой температуры — на 100–150 °C выше АС1 (АС3, Аcm), наследственно мелкозернистая сталь может иметь даже более крупное зерно аустенита, чем наследственно крупнозернистая сталь имеет при нагреве до 930 °C. Поэтому введено понятие о размере действительного зерна — величина зерна при комнатной температуре, полученной в результате той или иной термообработки. Размер действительного зерна обычно тем больше, чем больше размер исходного зерна аустенита (рис. 8.3).
Нагрев стали до температур значительно выше АС3 приводит к перегреву металла, следствием которого является образование крупного действительного зерна. Перегрев может быть исправлен повторным нагревом до более низкой температуры. Если нагрев проводится еще выше, чем при перегреве, и металл длительное время находится при этой температуре в окислительной атмосфере печи, то может возникнуть неисправимый дефект — пережог стали. Он сопровождается окислением и частичным оплавлением границ зерен и характеризуется камневидным изломом.
Величина действительного зерна стали оказывает наибольшее влияние на ударную вязкость, особенно при низких температурах.
Величину зерна определяют по ГОСТ 5639–82 сравнением микроструктуры стали при увеличении в 100 раз с эталонными шкалами.
Размер зерна оценивается баллами. Балл зерна прямо пропорционален числу зерен, помещающихся на 1 мм2 шлифа, и обратно пропорционален среднему диаметру зерна. Условно принято считать, что стали с зерном от 1 до 5 балла относятся к крупнозернистым сталям, а с более высоким баллом зерна (№ 6–15) — к мелкозернистым.
Распад аустенита.
Основное превращение, протекающее во время охлаждения при отжиге эвтектоидной стали, — это распад аустенита при комнатной температуре ниже точки А1 (727 оС) на смесь феррита с цементитом. При скорости охлаждения стали, обеспечивающей полное протекание диффузионных процессов и соответственно близкое к равновесному состоянию стали, в структуре последней согласно диаграмме «железо—углерод» образуется перлит.
В зависимости от степени переохлаждения аустенита различают три температурные области превращения: перлитную (переохлаждение до 500 °С), мартенситную (переохлаждение ниже Мн — для эвтектоидной стали ниже температуры 240 °С) и промежуточного (бейнитного) превращения (переохлаждение для эвтектоидной стали в интервале от 500 до 240 °С).
Рассмотрим структуры, образующиеся при диффузионном превращении аустенита.
При температуре 650–700 °С образуется собственно перлит. При перлитном превращении ведущей фазой является цементит. В результате образования пластинок цементита соседние участки аустенита обедняются углеродом, что в свою очередь приводит к образованию пластинок феррита.
При увеличения переохлаждения увеличивается количество зародышей новой фазы. Естественно, что с ростом числа чередующихся пластин феррита и цементита уменьшаются их размеры и расстояния между ними (рис. 8.6). Другими словами, с понижением температуры растет дисперсность продуктов превращения аустенита. Под степенью дисперсности понимают расстояние между соседними пластинками феррита и цементита. Схема феррито-цементитных структур:
а) перлит; б) сорбит; в) троостит
Перлит, сорбит, троостит являются структурами одной природы — механической смесью феррита и цементита и отличаются друг от друга лишь степенью дисперсности. С увеличением степени дисперсности пластин цементита растут твердость и прочность стали. Наибольшую пластичность имеют стали с сорбитной структурой. Троостит, образующийся при более низкой температуре превращения, характеризуется меньшей пластичностью (меньшими d и y ). Перлит, сорбит и троостит называют перлитными структурами.
Перлитные структуры в зависимости от формы цементита могут быть пластинчатыми или зернистыми. Пластинчатые структуры образуются при превращении однородного (гомогенного) аустенита, а зернистые — неоднородного аустенита. В первом случае нагрев доэвтектоидных сталей должен производиться выше АС3, а заэвтектоидных — выше Аcm. Соответственно для получения зернистых структур нагрев должен производиться ниже АС3 (Аcm).
Таким образом, дисперсность перлитных структур определяется степенью переохлаждения, а форма цементита — гомогенностью исходного аустенита.
Так как в доэвтектондных и заэвтектоидных сталях, в отличие от эвтектоидных, в интервале температур А1–А3 сначала выделяются избыточные фазы — феррит (в доэвтектоидных сталях) или избыточный цементит (в заэвтектоидных сталях), то на диаграмме изотермического распада аустенита для этих сталей характерно появление дополнительной кривой, характеризующей начало выделения соответствующих избыточных фаз.
Мартенситное превращение.
Мартенсит имеет высокую хрупкость и твердость (до 65 НRCЭ). Высокая твердость мартенсита обусловлена искажениями кристаллической решетки и соответственно большими внутренними напряжениями, определяемыми растворенным углеродом, а также возникновением фазового наклепа вследствие увеличения объема при превращении аустенита в мартенсит, в результате чего плотность дислокации в мартенсите достигает уровня плотности дислокации холоднодеформируемой стали и равняется 1010–1012 см–2.
Скорость образования кристаллов мартенсита очень велика и достигает 1000 м/с. Пластины мартенсита растут до границы аустенитного зерна либо до имеющегося в стали дефекта. Последующие пластины мартенсита, расположенные под углом к первым (60°, 120°), ограничены их размерами.
Высокая скорость образования кристаллов мартенсита при низкой температуре протекания превращения объясняется тем, что имеет место непрерывный переход от кристаллической решетки аустенита к решетке мартенсита.
Мартенситное превращение идет в интервале температур начала и конца мартенситного превращения Мн и Мк. Для эвтектоидной стали оно начинается при 240 и заканчивается при –50 °С. Однако при этой температуре в стали сохраняется еще некоторое количество непревращенного, так называемого «остаточного аустенита». Охлаждение ниже температуры Мк не приводит к его окончательному распаду. Положение точек Мн и Mк не зависит от скорости охлаждения, но зависит от содержания углерода в стали (рис. 8.9). Все легирующие элементы, растворенные в аустените, за исключением кобальта и алюминия, понижают точки Мн и Мк.
Мартенситное превращение очень чувствительно к напряжению, а деформация аустенита может вызвать превращения даже при температурах выше Мн (образуется мартенсит деформации).
Кристаллы в зависимости от состава сплава, а следовательно в зависимости от температуры своего образования, могут иметь различную морфологию и субструктуру. Различают два вида мартенсита: пластинчатый (игольчатый) и пакетный (реечный).
Пластинчатый мартенсит образуется в высокоуглеродистых сталях, имеющих низкие значения Мн и Мк. В этом случае кристаллы мартенсита в средней зоне содержат большое число микродвойников, образующих зону повышенной травимости, называемой мидрибом. Сами кристаллы мартенсита в этом случае представляют собой широкие пластины, которые в плоскости шлифа имеют вид игл.
Размеры кристаллов любой морфология мартенсита определяются величиной исходного зерна аустенита. Они тем крупнее, чем больше зерно аустенита. Первая пластина мартенсита имеет протяженность, соответствующую поперечному размеру зерна аустенита. Кристаллы, образующиеся при более низких температурах, имеют уже меньшую протяженность.
Если эвтектоидную сталь охладить только до комнатной температуры, то в структуре кроме мартенсита будет присутствовать некоторое количество остаточного аустенита. Наличие остаточного аустенита нежелательно, так как это приводит к неоднородности свойств по сечению и изменению размеров деталей. Последнее обстоятельство объясняется тем, что мартенсит имеет наибольший удельный объем по сравнению с другими структурами, а аустенит — наименьший. Поэтому при переходе от аустенитной структуры к мартенситной объем и размеры деталей увеличиваются. К особенностям мартенситного превращения относится то, что оно происходит только при непрерывном охлаждении. Задержка охлаждения при температуре выше температуры конца мартенситного превращения приводит к стабилизации аустенита. Аустенит становится более устойчивым. При последующем охлаждении его превращение затруднено и протекает с меньшей интенсивностью и полнотой. Эффект стабилизации аустенита зависит от температуры остановки при охлаждении.
Таким образом, особенностями мартенситного превращения являются его бездиффузионный характер, ориентированность кристаллов и образование при непрерывном охлаждении в интервале температур Мн–Мк.
Характерной чертой мартенсита является его высокая твердость и прочность, значения которых возрастают с увеличением содержания углерода в мартенсите. Временное сопротивление низкоуглеродистого мартенсита (0,025 % С) составляет 1000 МПа, а мартенсит с содержанием 0,6–0,7 % С имеет временное сопротивление 2 600–2 700 МПа. Однако с повышением в мартенсите содержания углерода возрастает и его склонность к хрупкому разрушению. Мартенсит, содержащий более 0,35–0,4 % С, имеет низкое сопротивление зарождению и распространению трещины, а также низкие значения вязкости разрушения KIс.
Увеличение удельного объема при образовании мартенсита является одной из основных причин возникновения при закалке больших внутренних напряжений, вызывающих деформацию и коробление изделий, а также появление закалочных трещин.