Что нужно для аэс
Как работает АЭС?
Как работает АЭС?
Атомная электростанция — комплекс необходимых систем, устройств, оборудования и сооружений, предназначенный для производства электрической энергии. В качестве топлива станция использует уран-235. Наличие ядерного реактора отличает АЭС от других электростанций.
На АЭС происходит три взаимных преобразования форм энергии
переходит в тепловую
переходит в механическую
преобразуется в электрическую
2. Тепловая энергия переходит в механическую
Тепло отводится из активной зоны реактора теплоносителем — жидким или газообразным веществом, проходящим через ее объем. Эта тепловая энергия используется для получения водяного пара в парогенераторе.
3. Механическая энергия преобразуется в электрическую
Механическая энергия пара направляется к турбогенератору, где она превращается в электрическую и дальше по проводам поступает к потребителям.
Из чего состоит АЭС?
Атомная станция представляет собой комплекс зданий, в которых размещено технологическое оборудование. Основным является главный корпус, где находится реакторный зал. В нём размещается сам реактор, бассейн выдержки ядерного топлива, перегрузочная машина (для осуществления перегрузок топлива), за всем этим наблюдают операторы с блочного щита управления (БЩУ).
Есть также второе здание, где размещается турбинный зал(2) : парогенераторы, сама турбина. Далее по технологической цепочке следуют конденсаторы и высоковольтные линии электропередач, уходящие за пределы площадки станции.
На территории находятся корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива. Кроме того, станции комплектуются элементами оборотной системы охлаждения – градирнями(3) (бетонная башня, сужающаяся кверху), прудом-охладителем (естественный водоем, либо искусственно созданный) и брызгальными бассейнами.
Какие бывают АЭС?
В зависимости от типа реактора на АЭС могут быть 1, 2 или 3 контура работы теплоносителя. В России наибольшее распространение получили двухконтурные АЭС с реакторами типа ВВЭР (водо-водяной энергетический реактор).
АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ
АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ
Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.
В настоящее время в России действует 4 АЭС с одноконтурными реакторами
АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ
АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ
Двухконтурную схему применяют на атомных станциях с в водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.
В настоящее время в России действует 6 АЭС с двухконтурными реакторами
АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ
АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ
Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.
В настоящее время в России действует 1 АЭС с трехконтурным реактором
В настоящее время в России действует 4 АЭС с одноконтурными реакторами
В настоящее время в России действует 6 АЭС с двухконтурными реакторами
В настоящее время в России действует 1 АЭС с трехконтурными реакторами
АЭС как мощный базовый источник энергии
Атомная электростанция — принцип работы простыми словами
Принцип работы атомной электростанции заключается в получении электроэнергии путем контролируемой (т. е. невзрывной) ядерной реакции.
Атомные электростанции используют ядерные реакции деления в реакторах. Реакторы нагревают воду для производства пара, который затем используется для выработки электроэнергии.
Франция около трех четвертей своей мощности получает от атомной энергетики, в то время как Бельгия, Болгария, Чехия, Венгрия, Словакия, Южная Корея, Швеция, Швейцария, Словения и Украина получают одну треть или больше. Япония, Германия и Финляндия получают более четверти своей мощности от атомной энергетики, в то время как в США одну пятую.
Италия приостановила свою ядерную энергетику. Среди стран, не имеющих атомных электростанций Австрия, Дания, Греция, Ирландия, Латвия, Норвегия, Филиппины, Португалия, Уругвай.
Основные части атомной электростанции
Принцип работы атомной электростанции основан и состоит из управляемого атомного реактора из стержней, которые изготовлены из стали, содержащей высокий процент материала, способного поглощать нейтроны, например бор. Стержни управления находятся в активной зоне реактора. Они контролируют количество реакции и, следовательно, количество вырабатываемой тепловой энергии. Кроме того для регулирования скорости синтеза применяются замедлители. Типичными замедлителями являются вода, графит или тяжелая вода (D2O). Только нейтроны с достаточно низкой скоростью могут производить деление ядер урана.
Ядерная реакция производит тепло, которое уносится теплоносителем. Типичными хладагентами являются вода, углекислый газ, жидкий натрий. Пар, вырабатываемый в парогенераторе пар переходит в паровую турбину. Сила паровой струи заставляет турбину вращаться. Турбина связана с генератором, который производит электричество.
Ядерное топливо
Ядерное топливо-это любой материал, который может быть использован для получения ядерной энергии. Наиболее распространенным типом ядерного топлива являются делящиеся элементы, которые могут подвергаться цепным реакциям ядерного деления в реакторе. Наиболее распространенными ядерными топливами являются 235U и 239Pu. Природный уран содержит 0,7% 235U. Но его количество должно быть увеличено на заводах-обогатителях примерно до 3%, чтобы быть более полезным в ядерной области.
Когда нейтрон ударяется об атом урана, уран расщепляется на два более легких атома и одновременно выделяет тепло. Деление тяжелых элементов-это экзотермическая реакция, которая может высвобождать большое количество энергии как в виде электромагнитного излучения, так и в виде кинетической энергии осколков. Цепная реакция относится к процессу, в котором нейтроны, высвобожденные при делении, производят дополнительное деление по крайней мере еще в одном ядре. Это ядро, в свою очередь, производит нейтроны, и процесс повторяется. Контролируемый процесс используется в ядерной энергетике, неконтролируемый в ядерном оружии.
Принцип работы атомной электростанции строится в расщеплении атома ядерного топлива. Когда атом урана расщепляется, часть энергии, которая удерживала его вместе, высвобождается в виде излучения тепла. Поскольку энергия и масса зависимы, высвобожденная энергия — это также высвобожденная масса.
235U + 1 нейтрон = 2 нейтрона + 92Kr (криптон) + 142Ba (барий) + ЭНЕРГИЯ
Таким образом, общая масса действительно немного уменьшается во время реакции.
Типы атомных электростанций
Существуют следующие основные типы реакторов
Реактор с кипящей водой
Реактор с кипящей водой работает как электростанция, вырабатывающая ископаемое топливо. Вода кипит внутри сосуда высокого давления, и образуется пароводяная смесь. Теплоноситель реактора движется вверх по активной зоне, поглощая тепло.
Когда пар поднимается к верхней части сосуда высокого давления, то направляется в турбогенератор для поворота турбины. Существует только один контур с водой при низком давлении, так что вода кипит в ядре при достаточно низком давлении.
Водяной реактор под давлением
Реактор с водой под давлением отличается тем, что здесь пар для работы турбины вырабатывается в парогенераторе. Блок наддува удерживает воду, протекающую через корпус реактора, под очень высоким давлением, чтобы предотвратить ее кипение. Затем горячая вода поступает в парогенератор, где преобразуется в пар. Пар проходит через турбину, которая производит электричество. Около 60% коммерческих энергетических реакторов в мире являются реакторами с водой под давлением. Очевидным преимуществом этого типа является то, что утечка топлива в активной зоне не приведет к попаданию радиоактивных загрязнений в турбину и конденсатор.
Контрольно-измерительных приборы атомной электростанции
Архитектура системы контрольно-измерительных приборов вместе с эксплуатационным персоналом станции служит «центральной нервной системой» атомной электростанции.
Через их различные составные элементы (например, оборудование, модули, датчики, передатчики, резервирование, исполнительные механизмы и т. д.), система ввода-вывода установки определяет основные физические параметры, контролирует производительность, интегрирует информацию и при необходимости автоматически корректирует работу установки. Система реагирует на сбои и ненормальные события, обеспечивает цели эффективного производства электроэнергии и безопасности, а также обеспечивает безопасную и надежную выработку электроэнергии. Большое значение следует придавать проектам, связанным с проектированием, испытанием, эксплуатацией, техническим обслуживанием, лицензированием, эксплуатацией и модернизацией систем ввода-вывода.
Система мониторинга реактора
Система контроля реактора является особенностью атомных электростанций и представляет собой систему нейтронного контроля для измерения нейтронов внутри реактора и систему радиационного контроля для измерения излучения внутри установки.
Система нейтронного мониторинга необходима для мониторинга активной зоны.
Безопасность атомных электростанций
Безопасность серьезно воспринимается теми, кто работает в ядерной сфере. Основной проблемой безопасности является выброс неконтролируемого излучения в окружающую среду, которое может нанести вред человеку и природе как на площадке реактора, так и за ее пределами.
Существует ряд физических барьеров между радиоактивным ядром и окружающей средой. Реакторы заключены в массивный железобетон толщиной 1,8 метра. Рабочие защищены от радиации внутренними бетонными стенами. Вакуумный корпус соединен с корпусами реакторов каналом сброса давления.
Вакуумное здание представляет собой бетонную конструкцию высотой порядка 70 м и находится под отрицательным атмосферным давлением. Это означает, что если бы какая-либо радиация просочилась из реактора, она была бы засосана в вакуумное здание и, следовательно, предотвращена от выброса в окружающую среду. Конструкция реактора также включает в себя несколько резервных компонентов, независимые системы, контроль контрольно-измерительных приборов и предотвращение выхода из строя одного типа оборудования, влияющего на любой другой. Безопасность важна и для работников атомных электростанций.
Дозы облучения контролируются с помощью пультов в активной зоне реактора.
Соблюдается жесткое физическое экранирование и ограничение по времени пребывания рабочего в зонах со значительным уровнем радиации.
Техническое обслуживание охлаждения активной зоны
В любом ядерном реакторе необходимо охлаждение. Обычно ядерные реакторы используют воду в качестве теплоносителя. Некоторые реакторы, которые не могут использовать воду, используют натрий или натриевые соли.
Контроль радиоактивности
Контроль нейтронного потока очень важен. Если мы уменьшаем поток нейтронов, мы уменьшаем радиоактивность. Наиболее распространенным способом уменьшения потока нейтронов является включение поглощения нейтронов через стержни управления.
Управляющие стержни важны, потому что реакция может выйти из-под контроля, если события деления происходят чрезвычайно часто. В современных атомных электростанциях ввод всех стержней управления в активную зону реактора происходит за несколько секунд, что позволяет максимально быстро остановить ядерную реакцию. Кроме того, большинство реакторов сконструировано так, что за пределами оптимального уровня по мере повышения температуры эффективность реакций снижается, следовательно, меньшее количество нейтронов способно вызвать деление и реактор автоматически замедляется.
Выводы
В 1950-х годах внимание было обращено на мирные цели ядерного деления, в частности на производство энергии. Сегодня мир производит столько же электроэнергии из ядерной энергии, сколько и из всех источников, вместе взятых в 1960 году.
Многие страны учитывают принцип работы атомной электростанции и построили исследовательские реакторы, чтобы обеспечить источник нейтронных пучков для научных исследований и производства медицинских и промышленных изотопов.
Сегодня известно, что только восемь стран обладают ядерным потенциалом. В отличие от этого, 56 эксплуатируют гражданские исследовательские реакторы, а 30 размещают около 450 коммерческих ядерных энергетических реакторов общей установленной мощностью более 377 000 МВт. Это более чем в три раза превышает суммарные генерирующие мощности Франции или Германии из всех источников. Порядка 60 ядерных энергетических реакторов находятся в стадии строительства, что эквивалентно 17% существующей мощности, в то время как более 150 твердо запланированы, что эквивалентно 46% нынешней мощности.
Атомные электростанции
Атомная электростанция или сокращенно АЭС это комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.
Во второй половине 40-х годов, перед тем, как были закончены работы по созданию первой атомной бомбы которая была испытана 29 августа 1949 года, советские ученые приступили к разработке первых проектов мирного использования атомной энергии. Основным направлением проектов была электроэнергетика.
В мае 1950 года в районе поселка Обнинское Калужской области, начато строительство первой в мире АЭС.
Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США.
Для проверки работоспособности генератор был подключен к четырем лампам накаливания, ни то не ожидал, что лампы зажгутся.
С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.
Первые Атомные электростанции
Строительство первой в мире атомная электростанция мощностью 5 МВт было закончено в 1954 году и 27 июня 1954 года она была запущена, так начала работать Обнинская АЭС.
В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт.
Строительство Белоярской промышленной АЭС началось так же в 1958 году. 26 апреля 1964 генератор 1-й очереди дал ток потребителям.
В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969.
В 1973 г. запущена Ленинградская АЭС.
В других странах первая АЭС промышленного назначения была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания) ее мощность составляла 46 МВт.
В 1957 году вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).
Мировыми лидерами в производстве ядерной электроэнергии являются:
Классификация АЭС
Атомные электростанции можно классифицировать по нескольким направлениям:
По типу реакторов
По виду отпускаемой энергии
На атомных станциях, расположенных на территории России имеются теплофикационные установки, они необходимы для подогрева сетевой воды.
Виды топлива используемого на Атомных электростанциях
На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.
Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.
Во-первых, его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.
ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри
ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.
Во-вторых, использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.
Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.
Урановое топливо
Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:
Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.
Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.
Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.
В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.
В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.
Подготовка урана
В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.
Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.
Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.
В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.
Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.
Именно ТВС называются топливом АЭС.
Как происходит переработка топлива АЭС
Спустя год использования урана в ядерных реакторах необходимо производить его замену.
Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение.
Продукты распада урана и плутония направляются на изготовление источников ионизирующих излучений, их используют в медицине и промышленности.
Все, что остается после этих манипуляций, отправляется в печь для разогрева, из этой массы варится стекло, такое стекло находится в специальных хранилищах.
Топ-10 АЭС по мощности
Из остатков изготавливают стекло не для массового применения, стекло используется для хранения радиоактивных веществ.
Из стекла сложно выделить остатки радиоактивных элементов, которые могут навредить окружающей среде. Недавно появился новый способ утилизации радиоактивных отходов.
Быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива.
По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.
Помимо этого, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного.
Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого не применялись.
Принцип работы АЭС
Принцип работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР).
Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура.
Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы.
На выходе из турбин, пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.
Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).
Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ.
Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.
Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор).
Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) — два натриевых и один водяной контуры.
В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.
Устройство ядерного реактора
В ядерном реакторе используется процесс деления ядер, при котором тяжелое ядро распадается на два более мелких фрагмента.
Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны.
Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее.
Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией.
При этом выделяется большое количество энергии, производство которой является целью использования АЭС.
Принцип работы ядерного реактора и атомной электростанции таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции.
Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны.
Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.
Основные элементы ядерного реактора
Принцип действия ядерного реактора
Они собраны в кассеты, включающие в себя по несколько десятков ТВЭЛов. По каналам через каждую кассету протекает теплоноситель.
Масса каждого стержня в отдельности ниже критической. Реакция начинается, когда все стержни находятся в активной зоне. Погружая и извлекая топливные стержни, реакцией можно управлять.
Итак, при превышении критической массы топливные радиоактивные элементы, выбрасывают нейтроны, которые сталкиваются с атомами.
В результате образуется нестабильный изотоп, который сразу же распадается, выделяя энергию, в виде гамма излучения и тепла.
Частицы, сталкиваясь, сообщают кинетическую энергию друг другу, и количество распадов в геометрической прогрессии увеличивается.
Это и есть цепная реакция — принцип работы ядерного реактора. Без управления она происходит молниеносно, что приводит к взрыву. Но в ядерном реакторе процесс находится под контролем.
Таким образом, в активной зоне выделяется тепловая энергия, которая передаётся воде, омывающей эту зону (первый контур).
Здесь температура воды 250-300 градусов. Далее вода отдаёт тепло второму контуру, после этого – на лопатки турбин, вырабатывающих энергию.
Преобразование ядерной энергии в электрическую можно представить схематично:
Активная зона реактора состоит из сотен кассет, объединенных металлической оболочкой. Эта оболочка играет также роль отражателя нейтронов.
Среди кассет вставлены управляющие стержни для регулировки скорости реакции и стержни аварийной защиты реактора.
Далее, вокруг отражателя устанавливается теплоизоляция. Поверх теплоизоляции находится защитная оболочка из бетона, которая задерживает радиоактивные вещества и не пропускает их в окружающее пространство.
Атомная станция теплоснабжения
Первые проекты таких станций были разработаны ещё в 70-е годы XXвека, но из-за наступивших в конце 80-х годов экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был.
Исключение составляют Билибинская АЭС небольшой мощности, она снабжает теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (они занимаются производством плутония):
На момент кризиса было начато строительство нескольких АСТ на базе реакторов, аналогичных ВВЭР-1000:
Строительство этих АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.
В 2006 году концерн «Росэнергоатом» планировал построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах.
Имеется проект, строительства необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем»
Недостатки и преимущества АЭС
Любой инженерный проект имеет свои положительные и отрицательные стороны.
Положительные стороны атомных станций:
Отрицательные стороны атомных станций:
Научные разработки в сфере атомной энергетики
Конечно, имеются недостатки и опасения, но при этом атомная энергия представляется самой перспективной.
Альтернативные способы получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. в настоящее время имеют не высокий уровнем получаемой энергии, и её низкой концентрацией.
Необходимые виды получения энергии, имеют индивидуальные риски для экологии и туризма, например производство фотоэлектрических элементов, которое загрязняет окружающую среду, опасность ветряных станций для птиц, изменение динамики волн.
Ученые разрабатывают международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые позволят повысить безопасность и увеличить КПД АЭС.
Россия начала строительство первой в мире плавающей АЭС, она позволяет решить проблему нехватки энергии в отдалённых прибрежных районах страны.
США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло и электроснабжения отдельных производств, жилых комплексов, а в перспективе — и индивидуальных домов.
Уменьшение мощности установки предполагает рост масштабов производства. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.
Производство водорода
Правительством США принята Атомная водородная инициатива. Совместно с Южной Кореей ведутся работы по созданию атомных реакторов нового поколения, способных производить в больших количествах водород.
INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции следующего поколения, будет производить ежедневно водород, эквивалентный 750000 литров бензина.
Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.
Термоядерная энергетика
Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза.
Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.
В настоящее время при участии России, на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.
Что такое КПД
Коэффициент полезного действия (КПД) — характеристика эффективности системы или устройства в отношении преобразования или передачи энергии.
Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой. КПД является безразмерной величиной и часто измеряется в процентах.
КПД атомной электростанции
Наиболее высокий КПД (92-95%) – достоинство гидроэлектростанций. На них генерируется 14% мировой электро мощности.
Однако, этот тип станций наиболее требователен к месту возведения и, как показала практика, весьма чувствителен к соблюдению правил эксплуатации.
Пример событий на Саяно-Шушенской ГЭС показал, к каким трагическим последствиям может привести пренебрежение правилами эксплуатации в стремлении снизить эксплуатационные издержки.
Высоким КПД (80%) обладают АЭС. Их доля в мировом производстве электроэнергии составляет 22%.
Но АЭС требуют повышенного внимания к проблеме безопасности, как на стадии проектирования, так и при строительстве, и во время эксплуатации.
Малейшие отступления от строгих регламентов обеспечения безопасности для АЭС, чревато фатальными последствиями для всего человечества.
Пример тому авария на АЭС в Чернобыле и японское землетрясение в марте 2011 года, приведшее к аварии на АЭС, расположенной на острове Хонсю, в городе Окума, префектуры Фукусима.
Кроме непосредственной опасности в случае аварии, использование АЭС сопровождается проблемами безопасности, связанными с утилизацией или захоронением отработанного ядерного топлива.
КПД тепловых электростанций не превышает 34%, на них вырабатывается до шестидесяти процентов мировой электроэнергии.
Кроме электроэнергии на тепловых электростанциях производится тепловая энергия, которая в виде горячего пара или горячей воды может передаваться потребителям на расстояние в 20-25 километров. Такие станции называют ТЭЦ (Тепло Электро Централь).
ТЕС и ТЕЦ не дорогие в строительстве, но если не будут приняты специальные меры, они неблагоприятно воздействуют на окружающую среду.
Неблагоприятное воздействие на окружающую среду зависит от того, какое топливо применяется в тепловых агрегатах.
Наиболее вредны продукты сгорания угля и тяжёлых нефтепродуктов, природный газ менее агрессивен.
ТЭС являются основными источниками электроэнергии на территории России, США и большинства стран Европы.
Однако, есть исключения, например, в Норвегии электроэнергия вырабатывается в основном на ГЭС, а во Франции 70% электроэнергии генерируется на атомных станциях.
Первая электростанция в мире
Самая первая центральная электростанция, the Pearl Street, была сдана в эксплуатацию 4 сентября 1882 года в Нью-Йорке.
Станция была построена при поддержке Edison Illuminating Company, которую возглавлял Томас Эдисон.
На ней были установлены несколько генераторов Эдисона общей мощностью свыше 500 кВт.
Станция снабжала электроэнергией целый район Нью-Йорка площадью около 2,5 квадратных километров.
Станция сгорела дотла в 1890году, сохранилась только одна динамо-машина, которая сейчас находится в музее the Greenfield Village, Мичиган.
30 сентября 1882 года заработала первая гидроэлектростанция the Vulcan Street в штате Висконсин. Автором проекта был Г.Д. Роджерс, глава компании the Appleton Paper & Pulp.
На станции был установлен генератор с мощностью приблизительно 12.5 кВт. Электричества хватало на дом Роджерса и на две его бумажные фабрики.
Электростанция Gloucester Road. Брайтон был одним из первых городов в Великобритании с непрерывным электроснабжением.
Станция состояла из динамо щетки, которая использовалась, чтобы привести в действие шестнадцать дуговых ламп.
В 1885 году электростанция Gloucester была куплена компанией Brighton Electric Light. Позже на этой территории была построена новая станция, состоящая из трех динамо щеток с 40 лампами.
Электростанция Зимнего дворца
В 1886 году в одном из внутренних дворов Нового Эрмитажа была построена электростанция.
Автором проекта выступил техник дворцового управления Василий Леонтьевич Пашков.
Электростанция была крупнейшей во всей Европе, не только на момент постройки, но и на протяжении последующих 15 лет.
Ранее для освещения Зимнего дворца использовались свечи, с 1861 года начали использовать газовые светильники. Так как электролампы имели большее преимущество, были начаты разработки по внедрению электроосвещения.
Прежде чем здание было полностью переведено на электричество, освещении при помощи ламп использовали для освещения дворцовых зал во время рождественских и новогодних праздников 1885 года.
9 ноября 1885 года, проект строительства «фабрики электричества» был одобрен императором Александром III. Проект включал электрификацию Зимнего дворца, зданий Эрмитажа, дворовой и прилегающей территории в течение трех лет до 1888 года.
Была необходимость исключить возможность вибрации здания от работы паровых машин, размещение электростанции предусмотрели в отдельном павильоне из стекла и металла. Его разместили во втором дворе Эрмитажа, с тех пор называемом «Электрическим».
Как выглядела станция
Здание станции занимало площадь 630 м², состояло из машинного отделения с 6 котлами, 4 паровыми машинами и 2 локомобилями и помещения с 36 электрическими динамо-машинами. Общая мощность достигала 445 л.с.
Первыми осветили часть парадных помещений:
Было предложено три режима освещения:
Крупные ТЭС, АЭС и ГЭС России
Крупнейшие электростанции России по федеральным округам:
Центральный:
Уральский:
Приволжский:
Сибирский ФО:
Южный:
Северо-Западный:
Список электростанций России, которые вырабатывают энергию при помощи воды, расположены на территории Ангаро-Енисейского каскада:
Енисей:
Ангара:
Атомные электростанции России
Балаковская АЭС
Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.
Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.
Белоярская АЭС
Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).
На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.
В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.
БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.
БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.
Билибинская АЭС
Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.
Вырабатывает электрическую и тепловую энергию.
Калининская АЭС
Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.
Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.
4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.
Кольская АЭС
Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.
Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.
Курская АЭС
Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.
Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.
Мощность станции — 4000 МВт.
Ленинградская АЭС
Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.
Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.
Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.
Нововоронежская АЭС
Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.
На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.
Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.
Ростовская АЭС
Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.
В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС[38].
В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.
Смоленская АЭС
Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.
В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.
Атомные электростанции США
АЭС Шиппингпорт с номинальной мощностью 60 МВт, открыта в 1958 году в штате Пенсильвания. После 1965 года произошло интенсивное сооружение атомных электростанций по всей территории Штатов.
Основная часть атомных станций Америки была сооружена в дальнейшие после 1965 года 15 лет, до наступления первой серьезной аварии на АЭС на планете.
Если в качестве первой аварии вспоминается авария на Чернобыльской АЭС, то это не так.
Первая авария произошла в штате Пенсильвания на станции Три-Майл-Айленд 28 марта 1979 года.
После авария правительство Соединенных Штатов Америки откорректировало условия безопасности функционирования всех АЭС в государстве.
Это соответственно привело к продолжению периода строительства и значительному подорожанию объектов «мирного атома». Такие изменения затормозили развитие общей индустрии в США.
В конце двадцатого века в Соединенных Штатах было104 работающих реактора. На сегодняшний день США занимают первое место на земле по численности ядерных реакторов.
С начала 21 столетия в Америке было остановлено четыре реактора в 2013 году, и начато строительство ещё четырех.
Фактически на сегодняшний момент в США функционирует 100 реакторов на 62 атомных электростанциях, которыми производится 20% от всей энергии в государстве.
Последний сооруженный реактор в США был введен в эксплуатацию в 1996 году на электростанции Уотс-Бар.
Власти США в 2001 году приняли новое руководство по энергетической политике. В нее внесен вектор развития атомной энергетики, посредствам разработки новых видов реакторов, с более подходящим коэффициентом экономности, новых вариантов переработки отслужившего ядерного топлива.
В планах до 2020 года было сооружение нескольких десятков новых атомных реакторов, совокупной мощностью 50 000 МВт. Кроме того, достичь поднятия мощности уже имеющихся АЭС приблизительно на 10 000 МВт.
США — лидер по количеству атомных станций в мире
Благодаря внедрению данной программы, в Америке в 2013 году было начато строительство четырех новых реакторов – два из которых на АЭС Вогтль, а два других на Ви-Си Саммер.
Эти четыре реактора новейшего образца – АР-1000, производства Westinghouse.