Что нового во вселенной
Самые интересные космические открытия в 2020 и 2021 году
В прошедшем году ученые не только делали новые открытия — в списке космических загадок тоже случилось пополнение: это странные радиокруги, исчезающие планеты, следы самого мощного межгалактического взрыва и даже непонятно как выжившая сверхновая.
Самая «экстремальная» экзопланета
В рядах экзопланет появилась новая — K2-141b. Это каменистая и раскаленная экзопланета. Да, как и на Земле, на ней есть океаны, которые испаряются, превращаясь в облака, а затем конденсируются и выпадают обратно на поверхность в виде дождя. Только в случае с K2-141b речь идет не о воде, а о камнях.
В 2020 году астрономы смоделировали атмосферу и погоду K2-141b и получили весьма впечатляющую картину. Дневная сторона планеты нагревается до 3000 °C, превращая поверхность в огромный океан лавы глубиной 100 км. Камень фактически испаряется при такой температуре, создавая атмосферу, в основном состоящую из диоксида кремния. Сверхзвуковой ветер переносит двуокись кремния на ночную сторону планеты, где она охлаждается при температуре ниже –200 °C и выпадает в виде каменного дождя.
Планета, которой никогда не существовало?
Экзопланета Дагон (ранее Фомальгаут b) была обнаружена возле звезды Фомальгаут — одной из самых ярких звезд на ночном небе, расположенной всего в 25 световых годах от Земли. Экзопланету ученые обнаружили в 2008 году, и она была первой экзопланетой, обнаруженной напрямую, а не косвенными методами наподобие наблюдения за эффектами, которые проявляются у родительской звезды.
Но в 2020 году астрономы попросту не нашли Фомальгаут b на небе. После анализа десятилетних наблюдений Хаббла оказалось — то, что было ярким пятном света в 2004 году, полностью исчезло уже к 2014 году. И обычно экзопланеты так себя не ведут.
Поэтому новое исследование предложило логичное объяснение – Фомальгаут b никогда не существовала, во всяком случае, в виде планеты. Компьютерное моделирование показало, что это, скорее всего, было плотное пылевое облако, созданное в результате столкновения двух астероидов или комет, которые затем дрейфовали рядом друг с другом почти 10 лет.
Бетельгейзе не планирует взрываться
Еще в 2019 году Бетельгейзе начала тускнеть, чем озадачила астрономов. Второй эпизод потемнения звезды опять заставил ученых думать о взрыве, но все оказалось гораздо прозаичнее.
Вероятно, дело в необычном составе звезды — в нем не было водорода или гелия, но зато присутствовали углерод, натрий и алюминий, которых обычно нет в белых карликах. Размер небесного тела — всего около 40% от массы Солнца. И сейчас оно проносится через галактику со скоростью 900 000 км/ч.
Единственное объяснение, которое придумали ученые: звезда каким-то образом пережила частичную сверхновую, о чем говорит ее состав. Но пока окончательного вердикта астрономы так и не вынесли.
Звезда превращается в планету из-за черной дыры
Но, пожалуй, самая необычная судьба ждет звезду в галактике GSN 069. Примерно через триллион лет она может превратиться в планету, похожую на Юпитер, благодаря бесконечному сближению с черной дырой.
Это выяснилось, когда астрономы заметили яркие рентгеновские всплески через каждые 9 часов — оказалось, что это звезда, вращающаяся по уникальной спирографической орбите вокруг черной дыры. Вспышки были вызваны веществом, которое выплескивалось с поверхности звезды каждый раз, когда она проносилась мимо черной дыры.
За несколько миллионов лет звезда превратилась из красного гиганта в белого карлика. Если дать ей еще триллион лет, она остынет настолько, что превратится в планету.
Следы самого мощного взрыва во Вселенной
Как и галактические вулканы, черные дыры иногда вспыхивают и испускают мощные вспышки энергии, пробивая дыры в окружающем их газе. А в прошедшем году телескопы обнаружили один из самых больших «кратеров», когда-либо существовавших во Вселенной.
Похоже, что сверхмассивная черная дыра в центре скопления галактик Змееносца в какой-то момент в далеком прошлом очень мощно «выстрелила» извержением — в обнаруженный кратер можно подряд поместить пятнадцать галактик Млечного Пути. Количество энергии, которое потребовалось, чтобы оставить такой межгалактический след, сложно даже представить — это было самое мощное извержение черной дыры во Вселенной.
Пульсар с самым сильным магнитным полем
В этом году внимание астрономов привлек еще один тип нейтронной звезды — она обладает самым сильным магнитным полем, которое когда-либо наблюдали во Вселенной.
Ученые подсчитали, что магнитное поле этого пульсара достигает 1 млрд Тесла (Тл). Например, магнитное поле Солнца составляет около 0,4 Тл, среднего белого карлика — 100 Тл, а у Земли — и вовсе 30 мкТл.
Новая космическая загадка — странные радиокруги
Ученые не стали изобретать сложных названий для новой космической загадки — это странные радиокруги (odd radio circles, или ORC). Они представляют собой необъяснимые сгустки радиоизлучения, которые не соответствуют ни одному известному науке объекту или явлению.
Несколько ORC были обнаружены на радиоизображениях в виде четких кругов, и они не испускают никаких оптических, инфракрасных или рентгеновских сигналов. Астрономы еще не могут сказать, насколько они далеко находятся от Земли и каковы их реальные размеры.
Астрономы уже исключили вероятность, что это артефакты, остатки сверхновой и пылевые облака. Сейчас ORC кажутся новым астрономическим объектом, и теперь астрономы разгадывают эту загадку.
Скоростные магистрали в Солнечной системе
Ученые выяснили, что в Солнечной системе проходит самая настоящая скоростная «автострада» — извилистые туннели и каналы вокруг планет. По ним небесные тела наподобие комет и астероидов могут перемещаться по галактике гораздо быстрее обычного.
Например, от Юпитера до Нептуна небесное тело может долететь меньше, чем за 10 лет, хотя без магистрали это занимает больше 100 тысяч лет. На практике это открытие означает, что, спроектировав космические корабли с учетом скоростных каналов, можно сэкономить на ракетном топливе и путешествовать не только на ближайшие к Земле планеты, но и в отдаленные уголки Солнечной системы.
Что за телескоп отправили в космос на смену «Хабблу» и что он может увидеть
Новейшая инфракрасная обсерватория нацелилась почти на самое начало времён: астрофизики рассчитывают увидеть только что родившуюся Вселенную.
Художественная концепция космического телескопа Джеймса Уэбба. Фото © Flickr / NASA’s James Webb Space Telescope / NASA GSFC / CIL / Adriana Manrique Gutierrez
Куда летит телескоп
В точку, расположенную в полутора миллионах километров от Земли. Она называется точкой Лагранжа L2. «Уэбб» будет туда добираться 29 дней. Говоря максимально простым языком, это такое место «равновесия», там притяжение Земли и Солнца взаимно полностью компенсирует друг друга. За счёт этого телескоп будет вращаться вокруг нашей звезды так, чтобы оставаться в одном и том же положении относительно Земли. В такой же точке сейчас работает телескоп «Спектр-РГ», который недавно подарил человечеству самую подробную (по крайней мере, на сегодняшний день) карту Вселенной. Для сравнения: «Хаббл» вращается по орбите вокруг Земли на высоте 547 километров, то есть лишь в полтора раза дальше МКС.
Кто такой Джеймс Уэбб
Джеймс Уэбб. Фото © NASA
Почему «Уэбб» инфракрасный
Давайте сначала немного вспомним школьную физику. Итак, семь цветов радуги, то есть всё, что мы видим, это лишь довольно малая часть электромагнитного спектра. В пределах этого отрезка у фиолетового света самые короткие волны, у красного — самые длинные. Если у света ещё более короткие волны, то это уже ультрафиолетовый свет. Соответственно, когда волны ещё длиннее, чем у красного, это инфракрасное излучение. Почему мы их не видим? Да потому, что наша атмосфера их практически не пропускает, вот природа и настроила наши глаза на то, что ей предоставлено. Природа будет делать только то, что практически полезно.
Фото © NASA / Chris Gunn
Так вот, ситуация во Вселенной такова, что чем объект дальше, тем он краснее. И это очевидный признак того, что Вселенная расширяется. Почему? Потому что есть такое явление — эффект Доплера. Это в честь австрийского физика, который его открыл, Кристиана Доплера. Суть в следующем: когда некий светящийся объект движется в нашу сторону (то есть в сторону наблюдателя), то волны его света кажутся ещё короче, чем они есть, и объект синеет. И, наоборот, когда что-то улетает прочь, оно краснеет — волны как будто удлиняются. Это называется, соответственно, синим и красным смещением. И дело в том, что в неизведанных глубинах Вселенной — сплошная краснота. Даже «инфракраснота». Всё разлетается.
«Хаббл» работает в принципе во всех возможных диапазонах: и в оптическом, и в ультрафиолетовом, и захватывает немного инфракрасного. Но теперь астрономы хотят заглянуть ещё дальше. Максимально далеко. И это неизбежно привело их к выводу, что надо сосредоточиться на инфракрасном свете.
Есть ещё одна причина. Она заключается в том, что чем объект холоднее, тем длиннее волны идущего от него света. Значит, в инфракрасный телескоп можно будет увидеть больше землеподобных экзопланет. Это же преимущественно холодные миры: в основном у них на поверхности в среднем около 0 градусов Цельсия, а бывает и минус 100.
Почему похож на пчелиные соты
Телескоп «Джеймс Уэбб». Фото © NASA / Emmett Given, NASA Marshall
У «Хаббла» диаметр главного зеркала — 2,4 метра. Оно сделано из особого стекла. Для телескопа нового поколения решили делать зеркало намного больше — 6,5 метра. Но делать такое же, как у «Хаббла», только больше, было нельзя — оно будет слишком тяжёлое и не поместится в ракету. Поэтому материал выбрали другой — спрессованный порошок из бериллия. Он и легче, и космические морозы великолепно выдерживает. Куски разрезали, с нужной стороны многократно разглаживали, полировали и придавали им нужную форму. Да, и покрывали слоем золота толщиной в 100 нанометров — это в 1000 раз тоньше человеческого волоса. Золото очень хорошо отражает инфракрасный свет.
Так вот, по поводу шестиугольников: это придумали, чтобы уже в космосе смонтировать огромное зеркало из нескольких частей. Такая форма идеальна для их состыковки, чтобы было без зазоров. И к тому же она довольно близка к кругу, а это именно то, что нужно для фокусировки света. Всё это астрофизикам хорошо известно. Точно такие же «соты», например, у Большого Канарского телескопа и у обсерватории Кека на Гавайях. У «Уэбба» получилось 18 гексагонов по 40 килограммов каждый. В итоге телескоп оказался вдвое легче «Хаббла» — 6,2 тонны против 11. И это при том, что по размерам он в несколько раз больше.
Чем «Уэбб» лучше «Хаббла»
Вид «Хаббла» с борта космического корабля «Атлантис» STS-125. Фото © Wikipedia
Во-первых, при всех фантастических возможностях «Хаббла» в оптическом диапазоне невозможно увидеть то, что скрыто, скажем, за плотным облаком пыли. А вот инфракрасный свет превосходно сквозь него проходит. Поэтому инфракрасный телескоп может смотреть, так сказать, сквозь стены.
Во-вторых, благодаря большому зеркалу «Уэбб» может охватить взглядом в 15 раз больше пространства, чем «Хаббл». А в-третьих, он может смотреть не только шире, но и дальше — на 800 миллионов световых лет дальше. И здесь сразу надо особо проговорить одну важную вещь: телескоп — это машина времени. Когда мы смотрим на звёзды в ночном небе, мы их видим такими, какими они были десятки, сотни лет назад, — именно столько времени летит от них свет. Поэтому заглянуть на 800 миллионов световых лет дальше — значит, перенестись на 800 миллионов лет в прошлое и увидеть, что и как было тогда. А поскольку горизонт видимости «Хаббла» — это уже добрых 12 миллиардов световых лет, то плюс 800 миллионов — это уже практически младенческий возраст Вселенной.
Что будет наблюдать
Фото © NASA / Chris Gunn
Астрономы надеются увидеть Вселенную такой, какой она была через 400 миллионов, а может быть, и всего 400 ТЫСЯЧ лет после Большого взрыва. Это были времена, которые назвали «тёмными веками»: новорождённый космос только что заполнился атомами простейшего вещества — водорода — и потух, потому что водород с фотонами не очень дружит. Но потом образовались первые звёзды, от них пошло мощное излучение, и оно стало выбивать из атомов электроны. Это была эпоха ионизации. А потом электроны начали врезаться в другие атомы и поселяться в них на постоянное место жительства, и это эпоха реионизации, рассвет юной Вселенной: по приходе в атом электрона выделяется фотон, атом светится. На это чудо из чудес и хотят посмотреть.
Далее, как уже было упомянуто, экзопланеты: техника «Уэбба» позволяет рассмотреть похожие на Землю миры в радиусе 15 световых лет от нас.
Кроме того, протопланетные диски, где рождаются в том числе и такие планеты, как наша. По отражённому от них звёздному свету «Уэбб» сможет определить, сколько на них воды, кислорода, углекислого газа — у каждого вещества свой «свет».
Наконец, очень много внимания уделят Солнечной системе, особенно карликовым планетам, астероидам и обязательно спутникам Юпитера и Сатурна. Ганимед, например, очень интересная мишень: во-первых, больше Меркурия, во-вторых, единственная луна с собственным магнитным полем, а в-третьих, у него тоже подозревают наличие океана подо льдом, как на Европе и Энцеладе.
Список запланированных наблюдений насчитывает больше двух тысяч пунктов. Среди них выбрали чуть менее трёх сотен самых приоритетных целей, и только они одни, по расчётам, займут шесть тысяч часов. «Гарантийный срок» телескопа — 5 лет. Будем надеяться, что он продолжит традицию «Хаббла» и на деле проработает целую эпоху.
Мы живем в голограмме: самые странные теории о Вселенной, которые могут оказаться правдой
Ученые не первую сотню лет пытаются понять, что такое Вселенная на самом деле. В последнее время развиваются технологии, исследователи больше узнают об окружающем мире и появляются новые теории о том, как все устроено. Одни из них звучат правдоподобно, а другие — безумно. «Хайтек» рассказывает о двух самых странных, но захватывающих, теориях об устройстве Вселенной.
Читайте «Хайтек» в
Почему Вселенная такая, какая она есть? На протяжении многих лет ученые исследовали этот вопрос и выдвинули множество идей, которые объясняют, как устроен космос и что его ждет в будущем. Известно, что Вселенная состоит из скоплений галактик. В каждой галактике — десятки и сотни миллиардов звезд с вращающимися вокруг них планетами, а также газо-пылевые облака огромных размеров. Есть еще гипотетическая темная материя и темная энергия, которая отвечает за расширение Вселенной. Однако некоторые ученые считают, что все устроено гораздо сложнее.
Голографическая Вселенная
Так появилась идея голографической черной дыры, которая хранит информацию о падающих в нее трехмерных объектах на двухмерный горизонт событий. Потом ученые пошли дальше — они предположили, что вообще любая информация в любом объеме может быть записана на поверхности, ограничивающей этот объем. Если мы говорим об информации из черного ящика, то она записана на стенках черного ящика, если информация о Солнечной системе, то записать ее можно на воображаемой сфере вокруг нее, а данные обо всем, что происходит во Вселенной, записано на ее границе.
Для этого не нужны какие-то определенные границы, ведь это теоретический принцип. Если подытожить, то он гласит, что, вся информация и процессы, которые происходят на участке пространства равна какой-то записи на границе этого объема. Теория голографической Вселенной предполагает, что все, что человек видит, слышит. ощущает и наблюдает, может быть как реальностью, так и «голографической» 3D-проекцией 2D-записей на «стене, которая окружает Вселенную». Здесь очень важны кавычки — голография не похожа на ту, к которой мы привыкли, это лишь схожий принцип. И, конечно, мир не окружен настоящей стеной, она воображаемая, как экватор на глобусе.
Несмотря на то, что эта идея звучит безумно, это научно проверяемая теория. Ученые, которые провели исследование в 2017 году. Международная группа космологов из Канады, Великобритании и Италии получила данные, свидетельствующие в пользу теории голографической Вселенной. Космологи использовали двумерную модель Вселенной, которая на основе наблюдаемых ранее параметров, смогла в точности воспроизвести картину микроволнового фона — теплового излучения, равномерно заполняющего космическое пространство. Полученные результаты свидетельствуют в пользу применимости голографического принципа, хотя пока и не опровергают стандартные космологические модели.
Вселенная — это сверхтекучая жидкость
Даже если пространство имеет только три измерения, все еще существует четвертое измерение в форме времени. Именно поэтому теоретически можно визуализировать Вселенную, которая существует в четырехмерном пространстве-времени. В 1905 году Эйнштейн в своей теории относительности первым предположил, что пространство и время могут быть связаны между собой. При этом сам термин «пространство-время» придумали лишь три года спустя, его автор — математик Герман Минковский. «Отныне время само по себе и пространство само по себе становятся пустой фикцией, и только единение их сохраняет шанс на реальность» — заявил он на коллоквиуме в 1908 году.
Согласно некоторым теориям, например, предложенной итальянскими физиками Стефано Либерати и Лукой Макчионе, пространство-время — это не просто абстрактная система отсчета, содержащая физические объекты, такие как звезды и галактики. Итальянские ученые считают, что это физическая субстанция сама по себе, аналогичная океану, полному воды. Подобно тому, как вода состоит из бесчисленных молекул, согласно теории, пространство-время — состоит из микроскопических частиц на более глубоком уровне реальности.
Вообще, сама идея о том, что пространство-время ведет себя как жидкость, самая новая — теорию «сверхтекучего вакуума» предложили больше полвека назад. Но итальянские исследователи стали первыми, кто задались вопросом о вязкости такой жидкости. То, как все движется во Вселенной — одна из загадок в физике. Например волна распространяется через воду, используя ее как «среду» для перемещения. Передача энергии требует среды, но как электромагнитные волны и, например, фотоны, движутся в пространстве, где вроде нет ничего?
Либерати и Макчионе предложили решение проблемы — они разработали теорию сверхтекучего космоса. Согласно ей, Вселенная состоит из сверхтекучей жидкости с нулевой вязкостью, которая ведет себя как единое целое. Сверхтекучей можно назвать жидкость, которая может течь бесконечно, при этом не теряя энергию. Это не выдуманная концепция, такие жидкости существуют на самом деле. Сверхтекучесть — фаза вещества, в которое переходят жидкости или газы, когда остывают до температур вблизи абсолютного нуля. В этом состоянии атомы теряют индивидуальные свойства, и ведут себя, как единый супер-атом. Самая известная сверхтекучая жидкость — это гелий, но лишь охлажденный до 2 K (Кельвинов) или –271,15 ℃.
У сверхтекучих жидкостей есть несколько уникальных свойств. Они могут, например, подняться по стенкам незакрытого сосуда и «сбежать» из него. При этом, их просто невозможно нагреть — они отлично передают тепло. Жидкость со сверхтекучими свойствами просто испарится при нагреве.
Теория визуализирует пространство-время как сверхтекучую жидкость с нулевой вязкостью. Странным свойством таких жидкостей является то, что их нельзя заставить вращаться «оптом», как «работает» обычная жидкость при перемешивании. Они распадаются на крошечные вихри. В 2014 году ученые выяснили, что эти квантовые «торнадо» в ранней Вселенной объясняют возникновение галактик.
Будущее Вселенной
Над созданием таких глобальных и странных теорий работает много ученых — физики, математики, астрономы. Все эти дисциплины объединяет космология. Как науке, космологии всего сто лет, но она уже очень многое знает о том, как устроена наша Вселенная — как образовалось все, что нас окружает, от атомов до галактик, с чего все началось и чем закончится. Разные теории объясняют мир по-своему. Возможно, однажды ученые придут к единому ответу.
В пещере есть два узника. По Платону, пещера — это чувственный мир, в котором живут люди. Как и узники пещеры, они полагают, будто благодаря органам чувств могут понять истинную реальность. Но такая жизнь — всего лишь иллюзия. Об истинном мире идей они могут судить только по смутным теням на стене пещеры. Философ может получить более полное представление о мире идей, постоянно ставя вопросы и находя ответы.
Теория струн полагает, что дополнительные искривленные и закрученные измерения пространства проявляются похожим образом. Формы этих дополнительных измерений сложны и разнообразны, и каждое заставляет вибрировать струну, находящуюся внутри таких измерений, по-разному именно благодаря своим формам.
Горизонт событий — граница в астрофизике, за которой события не могут повлиять на наблюдателя. Внутри горизонта событий все пути ведут частицы в центр черной дыры. Не существует способа для частиц выйти оттуда.
Что нового во Вселенной
За менее чем две недели с конца ноября вышли две публикации важнейших астрофизических данных.
Каталог гравитационно-волновых событий
Первая, от 30 ноября 2018 года, — препринт за авторством двух коллабораций — ligo (США) и VIRGO (Италия) [1]. В статье дан каталог гравитационно-волновых событий, зарегистрированных в двух рабочих сеансах LIGO с 12 сентября 2015 года по 19 января 2016 года и с 30 ноября 2016 года по 25 августа 2017 года. С 1 августа 2017 года к регистрации гравитационных волн подключилась установка VIRGO.
В каталоге представлены 11 гравитационно-волновых событий, информация о четырех из них опубликована впервые. Десять из них — слияние двух черных дыр, одно — слияние двух нейтронных звезд. Три события, включая слияние нейтронных звезд (которое имеет максимальное отношение сигнал/шум среди всех событий), зарегистрированы всеми тремя существующими детекторами — двумя, входящими в состав LIGO, и VIRGO. Август 2017-го оказался самым плодотворным месяцем: зафиксировано 5 событий, включая слияние нейтронных звезд.
Рис. 1. События слияния черных дыр и нейтронных звезд (нижняя самая левая точка), зарегистрированные гравитационно-волновыми детекторами LIGO и VIRGO. По горизонтали — масса большего, по вертикали — меньшего из слившихся объектов. Красными цифрами указаны примерные расстояния в миллиардах световых лет (ошибки — около 40%)
На рис. 1 изображены все 11 событий в координатах масс слившихся объектов. Ошибки всё еще довольно велики, но уже бросается в глаза огромная масса некоторых черных дыр: 30–50 масс Солнца. Породившие их звезды должны быть огромными, скорее всего звездами так называемой популяции III — самых первых звезд, сконденсировавшихся из первичного материала Вселенной — водорода и гелия.
Более поздние звезды обогащены тяжелыми элементами, из-за чего у них ниже теплопроводность и ниже верхний предел на массу, при которой звезда устойчива. Обилие тяжелых экземпляров также намекает на то, что в образовании двойных черных дыр участвуют шаровые скопления. Именно они дают механизм отбора самых тяжелых объектов для «спаривания»: тяжелые объекты «тонут» к центру скопления за счет динамики гравитационного взаимодействия многих тел.
Протопланетные диски
Вторая интересная публикация, о которой хотелось бы кратко рассказать, — это пресс-релиз NRAO (Национальной радиоастрономической обсерватории США) с подборкой 20 снимков протопланетных дисков, сделанных массивом субмиллиметровых телескопов ALMA [2].
ALMA — европейско-американский проект стоимостью 1,5 млрд долл. США. Инструмент расположен в Чили в пустыне Атакама на высоте 5 тыс. м. Представляет из себя 66 параболических антенн диаметром 12 и 7 м. Антенны могут перемещаться с одного постамента на другой на расстояние до 16 км. Благодаря этому можно подбирать разные соотношения между разрешением и полем зрения. ALMA — цифровой интерферометр. Данные со всех антенн обрабатываются массивом процессоров (коррелятором) производительностью 17 петафлоп/с (1,7 x 10 16 операций).
Зрение ALMA лежит в диапазоне 0,3–10 мм. Это соответствует температурам 1–50 К. Именно в этом интервале (около 30 К) излучает пыль далеких областей протопланетных дисков. Наблюдение в субмиллиметровом диапазоне удобно тем, что звезда не затмевает свечение диска. Яркость поверхности звезды в миллиметровом диапазоне всего в сотни-тысячи раз выше поверхностной яркости пыли (если диск оптически толстый). Зато площадь поверхности диска больше на 7–8 порядков величины, поэтому звезду не надо ничем загораживать.
Ранее самым знаменитым протопланетным диском, снятым ALMA, был HL Тельца. Трудно поверить, что это не результат численного моделирования, а реальный объект! Это очень молодая система — звезда образовалась всего 100 тыс. лет назад. И уже прекрасно видны кольцевые щели от готовых протопланет.
Их можно насчитать 9 штук. Размер диска в два с лишним раза больше диаметра орбиты Нептуна. То есть темные кольца — скорее всего, орбиты планет-гигантов, удаленных от звезды на десятки астрономических единиц. Самый маленький темный круг по размеру близок к орбите Сатурна.
И вот общественности представлены сразу 20 протопланетных дисков (рис. 3). Типичное расстояние до них — 400–500 световых лет.
Четвертая в первом ряду и первая в четвертом — двойные системы, где у каждой звезды свой протопланетный диск. На рис. 4 первый ряд дан в более высоком разрешении, с именами объектов.
Теория образования планетных систем еще далека до завершения. Возможны разные интерпретации этих светлых и темных колец, но щели от планет — самая на сей день правдоподобная.
Борис Штерн,
докт. физ.-мат. наук, вед. науч. сотр. Института ядерных исследований РАН
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.