Что необходимо учитывать при выборе измерительного прибора для измерения длины
Принципы выбора измерительных приборов для проведения измерения электрических величин
Измерительные приборы в зависимости от их назначения, области применения и условий работы должны выбираться по следующим основным принципам:
1) должна существовать возможность измерения исследуемой физической величины;
2) пределы измерения прибора должны охватывать все возможные значения измеряемой величины. При большом диапазоне изменений последней целесообразно использовать многопредельные приборы;
3) измерительный прибор должен обеспечивать требуемую точность измерений.
Поэтому следует обратить внимание не только на класс выбираемого измерительного прибора, но и на факторы, влияющие на дополнительную погрешность измерений: несинусоидальность токов и напряжений, отклонение положения прибора при установке его в положение, отличное от нормального, влияние внешних магнитных и электрических полей и т. п.;
4) при проведении некоторых измерений важную роль играют экономичность (потребление) измерительного прибора, его масса, габариты, расположение органов управления, равномерность шкалы, возможность считывания показаний непосредственно по шкале, быстродействие и пр.;
6) прибор должен удовлетворять общим техническим требованиям техники безопасности при производстве измерений, устанавливаемым ГОСГ 22261-76, а также техническим условиям или частным стандартам;
7) не допускается использовать приборы: с явными дефектами измерительной системы, корпуса и т. д; с истекшим сроком поверки; нестандартные или не аттестованные ведомственной метрологической службой, не соответствующие по классу изоляции напряжениям, на которые подключается прибор.
Точность измерений зависит от метода измерений и класса точности выбранных приборов. Класс точности прибора определяется его погрешностью. Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Выбор средств измерений: виды, классификация, методика и основные принципы
На сегодняшний день имеется большое количество средств, с помощью которых можно совершать измерения разных видов: линейные, весовые, температурные, силовые и т. д. Приборы различаются по точности, принципу работы, назначению, а также цене.
Для того чтобы правильно выполнить необходимую работу, следует внимательно подойти к выбору средств измерений. Они, в свою очередь, также подразделяются на несколько видов в зависимости от рассматриваемых критериев.
Классификация инструментов
Вам будет интересно: Колледж на Авиаконструкторов, 28: специальности, преподаватели, отзывы. Политехнический колледж городского хозяйства в Санкт-Петербурге
Средства измерений – это инструменты и приборы, которые применяют для выполнения измерений физических величин. Для каждого из них определены погрешности, указанные в нормативных документах и техническом регламенте.
Вам будет интересно: Центростремительное ускорение при движении по окружности: понятие и формулы. Центробежная и центростремительная силы
Средства измерений разделяют на различные типы согласно следующим критериям:
Виды инструментов
К наиболее распространенным видам средств измерений относятся перечисленные ниже.
Мера – средство измерений, используемое для воспроизведения нужного размера рассматриваемой физической величины. Например, для воспроизведения необходимой массы применяют гирю. Бывают однозначные и многозначные меры, а в некоторых случаях и целые магазины мер. Однозначная мера необходима для воспроизведения величины только одного размера. Многозначные меры применяют для определения нескольких размеров физических значений (например, осуществляют выбор средств измерений линейных размеров, с помощью которых можно узнать как сантиметры, так и миллиметры).
Вам будет интересно: Прилагательные к слову «работа»: список примеров
Эталон – меры с очень высоким уровнем точности. Их применяют для контроля правильности средств измерений.
Измерительный преобразователь – средство измерений, которое трансформирует сигнал информации об измерениях в другую форму. Так удобнее передавать сигнал для последующей обработки и хранения. Но преобразованный сигнал не может быть воспринят наблюдателем без использования специального инструмента. Для визуализации сигнал необходимо передать в показывающее устройство. Поэтому преобразователь обычно входит в полную конструкцию измерительного инструмента или применяется вместе с ним.
Измерительный прибор – средство для выполнения измерений, которое используется для выработки сигнала в такой форме, которая доступна для последующей визуализации наблюдателем. Имеются различные классификации данных приборов в зависимости от группы факторов. По назначению они делятся на универсальные, специальные, и контрольные. По конструктивному устройству могут быть механические, оптические, электрические и пневматические. По степени автоматизации подразделяются на механизированные, приборы ручного действия, автоматические и полуавтоматические.
Измерительная установка – это совокупность инструментов и вспомогательных элементов, объединенных для выполнения конкретной функции. Назначение частей такой установки – выработка информационных сигналов в форме, которая будет удобна для восприятия наблюдателем. При этом вся измерительная установка обычно является стационарной.
Измерительная система – совокупность инструментов, элементы которой соединены каналами связи, расположенными в пределах всего контролируемого пространства. Ее назначение – измерение одной или нескольких физических величин, которые имеются в изучаемом пространстве.
Критерии выбора
При выборе средств измерений необходимо в первую очередь учитывать точность, которой нужно будет достигнуть при выполнении работы. Она указывается в нормативных документах или в технической документации на деталь.
Кроме того, при выборе инструмента для измерения следует учитывать предельные отклонения, а также методы осуществления работ и способы их контроля.
Главным принципом выбора средств измерения является соответствие их поставленным требованиям по получению достоверных результатов с соблюдением заданной регламентом точностью. Кроме того, немаловажно учитывать материальные и временные затраты: они по возможности должны быть минимальными.
Исходные данные
Вам будет интересно: Адаптивные структуры управления: виды и основы функционирования
Для правильного выбора приборов измерений необходимо иметь исходные данные по следующим пунктам:
При необходимости выбора системы измерения с учетом фактора точности необходимо вычислить погрешность. Она рассчитывается как сумма погрешностей всех возможных источников (приборов для проведения измерений, преобразователей значений, эталонов) с соблюдением установленных для каждого из источников законов.
На первом этапе производят выбор средств измерений по точности в соответствии с требованиями работы. При подборе окончательного варианта учитывают также следующие требования:
В метрологии к выбору средств измерений по критерию точности предъявляют требование наличия следующих исходных данных:
Стандартизированные измерения
При выборе инструментов обычно учитывают приоритетность стандартизированных средств для выполнения измерений. Стандартизированное средство измерений – это такое средство, которое было изготовлено в соответствии с регламентом международного или специального стандарта по выполнению рассматриваемого вида работ.
В соответствии с этим условия выбора средств измерений зависят от специализации производства, на котором ведутся работы.
В производстве массовых изделий обычно применяют автоматизированные современные средства измерения и контроля, рассчитанные на высокую производительность. В серийном производстве применяют различные шаблоны и контрольные приспособления, по которым производят сравнения. В индивидуальном производстве осуществляют выбор универсальных средств измерений, с помощью которых можно выполнить различные виды работ.
Условия эксплуатации
Выбор средств измерений и контроля производят исходя из технического регламента на выбранные инструменты в условиях нормальной их эксплуатации и использования.
Нормальные условия – это такие условия, при которых значения величин влияющих на результат факторов могут быть опущены ввиду их малости. Описанные условия обычно указываются в инструкциях к средствам измерений или вычисляются в ходе проведения их калибровки.
Следует проводить различия между рабочими и предельными условиями проводимых измерений.
Рабочими условиями обычно считают условия выполнения измерений, при которых значения величин влияющих факторов входят в допуск рабочих областей. При этом рабочей областью называют область значений величины влияющего фактора, внутри которой приводят к нормальной имеющуюся погрешность или производят изменение значений рабочих инструментов.
Предельными условиями обычно называют максимальные и минимальные значения фактической и влияющих величин, выдерживаемые средством измерений без крупных разрушений и ухудшения его рабочих свойств и характеристик.
При выборе средств измерений и контроля для использования их в рабочих условиях следует учитывать взаимосвязь показаний инструментов и влияющих величин. На основе этого необходимо вводить поправки в конечные показания средств измерений или использовать корректирующие устройства и приборы.
Согласно нормативным документам поправки определяют по нормированным для условий на рабочем месте метрологическим характеристикам.
Назначение приборов
Выбор средств измерений основан на изучении различий двух случаев их использования:
В первом случае в ходе работ необходимо достигнуть значения меньше, чем предел погрешности измерения. Во втором случае приборы выбираются согласно условию, что вероятность возможных погрешностей параметра не должна быть выше, чем допустимые значения.
Погрешности
Одним из основных критериев выбора средств измерений в метрологии является соотношение значений предела допустимой абсолютной ошибки или погрешности (Δ) и поля допуска величины, которую необходимо измерить (Д).
Вам будет интересно: Понятие о полном ускорении. Компоненты ускорения. Ускоренное перемещение по прямой и равномерное движение по окружности
Соотношение при этом должно соответствовать следующему выражению:
Предел допустимой ошибки может быть представлен в относительных значениях (относительная ошибка измерения). В таком случае она должна быть меньше или равна 33,3 % от общего значения поля допуска, если не имеется других особенных ограничений.
Погрешности проведения измерений, указанные в регламентах, являются максимальными допустимыми ошибками. Они включают в себя все элементы работы, которые могут зависеть от выбранных измерительных инструментов, установочных эталонов, температурных изменений и т. д.
Методика выбора
Методика средств измерений подразделяется на три вида.
Приближенная методика широко используется при ориентировочном выборе приборов для измерения, а также при проведении контроля и экспертизы на соответствие нормативному, конструкторскому и технологическому регламенту. Для этого выполняют следующие действия:
Расчетная методика применяется при выборе приборов для одиночного и мелкосерийного производства, измерения параметров выборки при статистическом способе контроля, проведения экспериментов, а также перепроверки бракованных деталей. Она включает следующие этапы действий:
Табличная методика применяется при выборе инструментов измерения для крупносерийного и массового производства. Данный способ может быть осуществлен, если работа по изготовлению деталей включает измерения, а не контроль с использованием калибров.
Таким образом, можно отметить, что методы выбора средств измерений зависят от типа производства, на котором будут производиться работы.
Осуществление выбора
Выбор и назначение приборов для измерений осуществляют отделы, которые занимаются разработкой:
Выбор средств и способов измерений по имеющимся исходным данным производят квалифицированные сотрудники. Они должны быть хорошо знакомы с основами физических измерений, со способами оформления и использования результатов и ошибок измерений, а также с принципами нормирования метрологических параметров и вычисления по ним погрешностей инструментов.
Для осуществления измерений в процессе изготовления продукции назначаются специальные рабочие, отвечающие за средства измерений.
В заключение можно сказать, что правильный выбор инструмента для измерений из имеющегося на сегодняшний день ассортимента – залог эффективного производства и уменьшения количества бракованных изделий.
Контрольно-измерительные инструменты. Выбор средств измерений
1. Выбор средств измерений и их применение
Выбор средств измерений при проверке точности деталей — один из важнейших этапов разработки технологических процессов технического контроля.
Основные принципы выбора средств измерений заключаются в следующем: точность средства измерений должна быть достаточно высокой по сравнению с заданной точностью выполнения измеряемого размера, а трудоемкость измерений и их стоимость должны быть возможно более низкими, обеспечивающими наиболее высокие производительность труда и экономичность.
Недостаточная точность измерений приводит к тому, что часть годной продукции бракуют (ошибка первого рода); в то же время по той же причине другую часть фактически негодной продукции принимают как годную (ошибка второго рода).
Излишняя точность измерений, как правило, бывает связана с чрезмерным повышением трудоемкости и стоимости контроля качества продукции, а следовательно, ведет к удорожанию ее производства.
При выборе измерительных средств и методов контроля изделий учитывают
Определяющим фактором является допускаемая погрешность измерительного средства, что вытекает из стандартизованного определения действительного размера как и размера, получаемого в результате измерения с допустимой погрешностью.
Самый простой способ выбора средств измерений основан на том, что точность средства измерений должна быть в несколько раз выше точности изготовления измеряемой детали. При контроле точности технологических процессов измерением точности размеров деталей рекомендуется применять средства измерений с ценой деления не более 1/6 допуска на изготовление.
Значение допустимой погрешности измерения зависит от допуска, который связан с номинальным размером и с квалитетом точности размера контролируемого изделия. Расчетные значения допустимой погрешности измерения в мкм приводятся в стандартных таблицах.
Рекомендуется, чтобы величины допустимых погрешностей измерения для квалитетов 2–9 составляли до 30%, для квалитета 10 и грубее — до 20% допуска на изготовление изделия.
2. Контрольно-измерительные инструменты
К инструментам с линейным нониусом относятся штангенциркуль, штангенрейсмас и штанген-глубиномер. Основой штангенинструмента является линейка — штанга с нанесенными на ней делениями; это – основная шкала. По штанге движется рамка с вырезом, на наклонной грани которого нанесена нониусная (вспомогательная) шкала.
Штангенциркуль (рис. 2) предназначен для измерения линейных размеров (диаметров, глубины, ширины, толщины и т.п.). На длине 9 мм рамки (нониуса), соответствующей 9 делениям штанги, нанесено 10 равных делений. Таким образом, каждое деление нониуса равно 0,9 мм.
Рис. 2. Методы измерения размеров штангенциркулем
Если поставить рамку так, чтобы шестой штрих нониуса стал против шестого штриха штанги, то зазор между губками будет равен 0,6 мм (рис. 3, А).
Рис. 3. Установка нониуса: А — на размер 0,6 мм; Б — на размер 7 мм; В — на размер 7,4 мм
Если нулевой штрих нониуса совпал с каким-либо штрихом на штанге, например с седьмым, то это деление и указывает действительный размер в миллиметрах, т.е. 7 мм (рис. 3, Б).
Если нулевой штрих нониуса не совпал ни с одним штрихом на штанге, то ближайший штрих на штанге слева от нулевого штриха нониуса показывает целое число миллиметров. Десятые доли миллиметра равны порядковой цифре штриха нониуса вправо, не считая нулевого, который точно совпал со штрихом штанги — основной шкалы (например 7,4 мм на рис. 3, В).
Кроме нониусов с величиной отсчета 0,1 мм применяются нониусы с величиной отсчета 0,05 и 0,02 мм.
Штангенрейсмасы предназначаются для точной разметки и измерения высот от плоских поверхностей.
Штангенрейсмас (рис. 4, а) состоит из основания 8, в котором жестко закреплена штанга 1 со шкалой; рамки 2 с нониусом 6 и стопорным винтом 3; устройства для микрометрической подачи 4, включающего в себя движок, винт, гайку и стопорный винт; сменных ножек для разметки 7 с острием и для измерения высот 9 с двумя измерительными поверхностями, нижней плоской и верхней в виде острого ребра шириной не более 0,2 мм (рис. 4, б); зажима 5 для закрепления ножек 7 и 9 и державки 10 на выступе рамки (рис. 4, в) для игл различной длины.
Рис 4. Штангенрейсмас
Шкала и нониус такие же, как и у других штангенинструментов.
Измерение или разметка штангенрейсмасом производится на разметочной плите. Перед измерением проверяется нулевая установка инструмента. Для этого рамку с ножкой опускают до соприкосновения с плитой или специальной базовой поверхностью (в зависимости от вида ножки). При таком положении нулевое деление нониуса должно совпасть с нулевым делением шкалы штанги.
После выверки штангенрейсмаса можно приступать к измерениям. При измерении высоты детали опускают вручную рамку с ножкой, немного не доводя ее до детали. Дальнейшее перемещение ножки до соприкосновения с деталью осуществляется с помощью гайки микрометрической подачи. Степень прижима ножки к детали определяется на ощупь. В установленном положении рамку закрепляют.
Индикаторы часового типа. Вследствие небольшого предела измерений инструменты этой группы предназначаются главным образом для относительных (сравнительных) измерений путем определения отклонений от заданного размера. В сочетании со специальными приспособлениями эти приборы могут применяться и для непосредственных измерений. Они используются также и для контроля правильности геометрических форм деталей машин и их взаимного расположения. Наибольшее распространение из приборов этой группы получили индикаторы часового типа (рис. 5, а) с ценой деления 0,01 мм; применяются также индикаторы с ценой деления 0,002 мм.
При перемещении измерительного стержня на 1 мм стрелка индикатора делает полный оборот. Индикаторы, пределы измерения которых более 3 мм, имеют счетчик оборотов стрелки.
Практика измерений. Индикаторы часового типа применяют при измерениях радиального и осевого биения, отклонений от прямолинейности, отклонений положения одной детали относительно другой, при проверке взаимного расположения поверхностей и пр.
Рис. 5. Индикатор часового типа (а) и установка индикатора для измерения: б — на универсальном штативе; в — различные способы крепления индикаторной головки на штативе
При измерениях применяют универсальный штатив и другие приспособления.
Индикатор, установленный в универсальном штативе (рис. 5, б), может занимать самые различные положения по отношению к проверяемому изделию. Конструктивное оформление универсальных штативов может быть различным, но принципиальная схема их остается одной и той же. Варианты приведены на рис. 5, в.
При любом измерении индикатором (абсолютном или относительном) его нужно установить в некоторое начальное положение. Для этого измерительный наконечник приводят в соприкосновение с поверхностью установочной меры (или столика). Индикатор подводят так, чтобы стрелка его сделала 1–2 оборота. Таким образом стержню индикатора дается натяг, чтобы в процессе измерения индикатор мог показать как отрицательные, так и положительные отклонения от начального положения или установочной меры. Стрелка индикатора при этом устанавливается против какого-либо деления шкалы. Дальнейшие отсчеты следует вести от этого показания стрелки, как от начального. Чтобы облегчить отсчеты, начальное показание обычно приводят к нулю. Установка индикатора на нуль осуществляется поворотом циферблата за рифленый ободок.
При измерениях индикаторным нутромером его предварительно настраивают на измеряемый размер по микрометру, блоку плоскопараллельных концевых мер или калиброванному кольцу и после этого устанавливают на нуль.
Настроенный нутромер осторожно вводят в измеряемое отверстие и небольшими покачиваниями (рис. 6, а) определяют отклонение стрелки от нулевого положения. Это и будет отклонение измеряемого размера от того, на который был настроен. В тех случаях, когда измерительный стержень индикаторной головки не может коснуться измеряемой поверхности, прибегают к специальным рычажным приспособлениям, соединенным с корпусом индикатора. Устройство этих приспособлений ясно из рисунка (рис. 6, б).
Рис. 6. Индикаторный нутромер (а) и рычажные приспособления к индикатору (б), применяемые для измерений в труднодоступных местах
Микрометры для наружных измерений (рис. 7), микрометрические нутромеры и микрометрические глубиномеры относятся к микрометрическим инструментам.
Рис. 7. Микрометр для наружных измерений: 1 — пятка; 2 — микрометрический винт; 3 — стопорная гайка; 4 — втулка; 5 — барабан; 6 — трещотка; 7 — скоба
Отсчетное устройство микрометрических инструментов состоит из втулки 1 (рис. 8, а) и барабанчика 2. На втулке по обе стороны продольной линии нанесены две шкалы с делениями через 1 мм так, что верхняя шкала сдвинута по отношению к нижней на 0,5 мм.
На скошенном конце барабанчика имеется круговая шкала с 50 делениями. При вращении барабанчик перемещается вдоль втулки и за один оборот проходит путь, равный 0,5 мм. Следовательно, цена деления шкалы барабанчика равна 0,5:50=0,01 мм.
При измерениях целое число миллиметров отсчитывают по нижней шкале, половины миллиметров — по верхней шкале втулки, а сотые доли миллиметра — по шкале барабанчика. Число сотых долей миллиметра отсчитывают по делению шкалы барабанчика, совпадающему с продольной риской на втулке.
Примеры отсчета по шкалам микрометра приведены на рис. 8.
Рис. 8. Методика отсчета размеров по шкале микрометрического инструмента: а — 11,0 мм; б — 9,36 мм; в — 10,5 мм; г — 9,86 мм
Чтобы при измерении микрометром ограничить силу натяжения на измеряемую деталь и обеспечить постоянство этой силы, микрометр снабжается трещоткой.
Перед тем как прочесть показания микрометра, барабанчик закрепляют с помощью специального стопора.
Кроме обычных штангенциркулей и других инструментов с нониусной шкалой и шкалой часового типа применяют также и модели инструментов с электронными цифровыми индикаторами, которые выводят на экран в цифровом виде показания значений произведенного измерения.
При эксплуатации измерительных приборов следует помнить, что измерительные поверхности у наконечников должны быть чистыми, а измеряемые поверхности деталей должны быть чистыми и их температура не должна отличаться от температуры измерительных приборов. Недопустимо измерять горячие детали точными измерительными приборами. В руках измерительные приборы долго держать нельзя, так как это влияет на точность измерений. Не допускается измерять подвижные детали, потому что это опасно, приводит к быстрому износу измерительных поверхностей инструмента и к потере точности результатов измерения.
При кратковременном и длительном хранении измерительный инструмент протирают мягкой ветошью с авиабензином и смазывают тонким слоем технического вазелина. Измеряющие поверхности наконечников отделяют друг от друга, а стопоры ослабляют. При длительном хранении инструменты обертывают промасленной бумагой.
Перед тем как приступить к измерениям рекомендуют проверить нуль показаний средств измерения. Для этого предварительно настраивают показания шкалы инструмента на измеряемый размер по мерным плиткам (плоскопараллельным концевым мерам) или по калиброванному кольцу или валику и таким образом определяют положение нуля при измерениях.
Щупы служат для определения величины зазоров с точностью 0,01 мм (рис. 9).
Рис. 9. Набор щупов
Щупы изготовляются 1-го и 2-го классов точности с толщиной пластин от 0,03 до 1 мм и с интервалом 0,01 мм или больше, в зависимости от номера набора.
Поверочные плиты (рис. 10) являются основными средствами проверки плоскостности поверхности детали методом на краску. Плиты изготовляют из чугуна размерами от 100х200 до 1000х1500 мм.
На поверхности плит не должно быть коррозийных пятен или раковин.
Поверочные плиты служат не только для контроля плоскостности. Их широко используют в качестве базы для различных контрольных операций с применением универсальных средств измерений (рейсмусов, индикаторных стоек и др.)
Рис. 10. Поверочные плиты
Поверочные линейки стальные. Отклонения от плоскостности и прямолинейности (отклонения формы плоских поверхностей) контролируют с помощью поверочных линеек (рис. 11). Поверочные линейки выпускают лекальные с двусторонним скосом (рис. 11, а); трехгранные (рис. 11, б) и четырехгранные (рис. 11, в); с широкой рабочей поверхностью (прямоугольного сечения (рис. 11, г) и двутаврового сечения (рис. 11, д), «чугунные мостики» (рис. 11, е).
Рис. 11. Поверочные линейки
Линейки выпускаются различных размеров (LxHxB мм): а – до 320х40х8; б – до 320х30; в – до 320х25; г – до 1000х60х12; д – до 4000х160х30.
Поверочные линейки изготовляют длиной: лекальные — до 500 мм, «чугунные мостики» — до 2500 мм и более. Лекальные применяют для контроля прямолинейности поверхности детали «на просвет», а поверочные линейки «чугунные мостики» — применяют для проверки прямолинейности «на краску», с помощью щупа или папиросной бумажки.
При проверке на просвет (рис. 12, а) лекальную линейку укладывают острым скосом на проверяемую поверхность, а источник света помещают сзади линейки и детали. Минимальная ширина щели, улавливаемая глазом, составляет 3…5 мкм. Для контроля щели просвета обычно используют щупы.
Рис. 12. Схема контроля отклонения от плоскостности лекальной линейкой «на просвет»: а — визуально; б — с образцом просветов
Измерение отклонений от прямолинейности лекальными линейками «на просвет» требует навыка от исполнителя. Для выработки навыка оценивать на глаз по величине просвета величину отклонения от прямолинейности применяют образец просветов (рис. 12, б), который состоит из лекальной линейки 1, комплекта из четырех концевых мер длины с градацией 1 мкм, двух одинаковых концевых мер длины (2) и стеклянной пластины 3. При измерении между концевыми мерами длины и ребром линейки образуются «просветы», окрашенные в разные цвета вследствие дифракции видимого света и от величины зазора между линейкой и концевой мерой длины.