Что необходимо для построения прямой

Уравнение прямой, виды уравнения прямой на плоскости

В прошлом материале мы рассмотрели основные моменты, касающиеся темы прямой на плоскости. Теперь же перейдем к изучению уравнения прямой: рассмотрим, какое уравнение может называться уравнением прямой, а также то, какой вид имеет уравнение прямой на плоскости.

Определение уравнения прямой на плоскости

Давайте посмотрим, какой вид будет иметь уравнение прямой на плоскости. Этому будет посвящен весь следующий раздел нашей статьи. Отметим, что существует несколько вариантов записи уравнения прямой. Объясняется это наличием нескольких способов задания прямой линии на плоскости, и также различной спецификой задач.

Общее уравнение прямой линии

Поясним некоторые важные аспекты темы.

Посмотрите на рисунок.

Что необходимо для построения прямой

Все приведенные уравнения прямых, которые мы рассмотрим ниже, могут быть получены из общего уравнения прямой. Также возможен и обратный процесс, когда любое из рассматриваемых уравнений может быть приведено к общему уравнению прямой.

Разобраться во всех нюансах темы можно в статье «Общее уравнение прямой». В материале мы приводим доказательство теоремы с графическими иллюстрациями и подробным разбором примеров. Особое внимание в статье уделяется переходам от общего уравнения прямой к уравнениям других видов и обратно.

Уравнение прямой в отрезках

Что необходимо для построения прямой

Дополнительно рекомендуем ознакомиться с материалом, изложенным в статье «Уравнение прямой в отрезках».

Уравнение прямой с угловым коэффициентом

Что необходимо для построения прямой

Обращаем ваше внимание, что с помощью уравнения прямой с угловым коэффициентом очень удобно искать уравнение касательной к графику функции в точке.

Больше материала по теме можно найти в статье «Уравнение прямой с угловым коэффициентом». Помимо теории там размещено большое количество графических примеров и подробный разбор задач.

Каноническое уравнение прямой на плоскости

Что необходимо для построения прямой

Больше материала на тему канонического уравнения прямой смотрите здесь. В статье мы приводим целый ряд решений задач, а также многочисленные примеры, которые позволяют лучше овладеть темой.

Параметрические уравнения прямой на плоскости

Обращаем ваше внимание на то, что коэффициенты a x и a y при параметре λ в данном виде уравнений представляют собой координаты направляющего вектора прямой линии.

Больше информации ищите в статье «Параметрические уравнения прямой на плоскости».

Нормальное уравнение прямой

Что необходимо для построения прямой

Обращаем ваше внимание на то, что нормальное уравнение прямой на плоскости позволяет находить расстояние от точки до прямой на плоскости.

Источник

Как построить прямую? Как построить график прямой или линейной функции?

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ

Для начала определимся с формулой прямой или линейной функции ее записывают по-разному, но смысл от этого не меняется:y=kx+b; y=ax+b; ax+by+c=0;

a и k — называются угловыми коэффициентами, а число b – свободным членом.

Если a>0 или k>0, то график прямой возрастающий;

Параллельные прямые имеют равные угловые коэффициенты и разные свободные члены b не равно с.
Пусть дано две прямые y=kx+b и y=ax+c, они будут параллельны если k=a

Что необходимо для построения прямой Признак параллельности прямых a=k

Что необходимо для построения прямой Перпендикулярные прямые k*a=-1

b — указывает где график прямой пересекает ось y.

Что необходимо для построения прямой

Алгоритм построения прямой.
Что бы построить прямую, нужно найти не менее двух то точек на графике и начертить линейную функцию.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Рассмотрим на примере №1:

берем 2 точки чтобы построить график прямой
x1=0 y1=0+2=2 получили точку (0;2)
x2=1 y2=1+2=3 получили точку (1;3)

Видно что a=1 (график прямой возрастает),
b=2 (график прямой пересекает ось y в точке (0;2))

Пример №2:
Среди прямых, заданных уравнениями, укажите пары параллельных прямых: 1) х+у=2; 2) у-х=2; 3) х-у=3; 4) y=1; 5) у=3; 6) 2х+2у+5=0.

Выразим во всех уравнениях y, получим
1) у=2-x; k=-1
2) у=2+x; k=1
3) у=x-3; k=1
4) y=1; k=0
5) у=3; k=0
6) у=-2,5-x; k=-1.

Ответ: Параллельные прямые 1) и 6); 2) и 3); 4) и 5), так как коэффициенты их равны.

Источник

Общее уравнение прямой: описание, примеры, решение задач

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Общее уравнение прямой: основные сведения

указанная теорема состоит из двух пунктов, докажем каждый из них.

Что необходимо для построения прямой

Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.

Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.

Рассмотрим конкретный пример общего уравнения прямой.

Что необходимо для построения прямой

Неполное уравнение общей прямой

Разберем все вариации неполного общего уравнения прямой.

Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.

Что необходимо для построения прямой

Решение

На чертеже изображена прямая, необходимо записать ее уравнение.

Что необходимо для построения прямой

Решение

Общее уравнение прямой, проходящей через заданную точку плоскости

Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.

Решение

Решение

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.

Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.

Решение

Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.

Решение

Осуществим переход от общего уравнения к каноническому:

Решение

Произведем нужные действия по алгоритму:

Решение

В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.

Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:

Каноническое уравнение преобразуется к общему по следующей схеме:

Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:

Решение

Осуществим переход от параметрических уравнений к каноническому:

Перейдем от канонического к общему:

Решение:

Просто перепишем уравнение в необходимом виде:

Составление общего уравнения прямой

Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.

Решение

Решение

Источник

Лекция 2. Ортогональные проекции прямой

2.1. Задание прямой на эпюре

Прямая на чертеже может быть задана изображением прямой, точкой и направлением, отрезком прямой и двумя пересекающимися плоскостями.

Что необходимо для построения прямой
а б
Рисунок 2.1 – Проекции прямой

Прямоугольной проекцией отрезка в общем случае является отрезок (второе свойство центрального и параллельного проецирования). На чертеже прямая m (Рисунок 2.1, а) и отрезок АВ (Рисунок 2.1, б) произвольно наклонены к плоскостям проекций. Такие прямые называются прямыми общего положения.

Длина прямоугольной параллельной проекции отрезка общего положения всегда меньше длины самого отрезка.

2.2. Прямые частного положения

Прямая, параллельная горизонтальной плоскости проекций, называется горизонтальной прямой или горизонталью (Рисунок 2.2).

Что необходимо для построения прямой
Рисунок 2.2 – Эпюр горизонтали

Если отрезок параллелен плоскости проекций π1, то его фронтальная проекция А2В2 параллельна оси проекций π12, а горизонтальная проекция отрезка А1В1 определяет истинную величину АВ:

Прямая, параллельная фронтальной плоскости проекций, называется фронтальной прямой или фронталью (Рисунок 2.3).

Что необходимо для построения прямой

Рисунок 2.3 – Эпюр фронтали

Если отрезок параллелен плоскости проекций π2, то его горизонтальная проекция параллельна оси проекций π21, а фронтальная проекция отрезка C2D2 определяет истинную величину CD.

Прямая GH, параллельная профильной плоскости проекций, называется профильной прямой (Рисунок 2.4).

Прямая EF, перпендикулярная горизонтальной плоскости проекций, называется горизонтально-проецирующей (Рисунок 2.4).

Прямая KL, перпендикулярная фронтальной плоскости проекций, называется фронтально-проецирующей (Рисунок 2.4).

Прямая MN, перпендикулярная профильной плоскости проекций, называется профильно-проецирующей (Рисунок 2.4).

Что необходимо для построения прямой

Рисунок 2.4 – Эпюры проецирующих прямых (EF, KL, MN) и профильной прямой GH

2.3. Метод прямоугольного треугольника

Метод прямоугольного треугольника позволяет по эпюру отрезка прямой общего положения определить его истинную величину.

Рассмотрим положение отрезка АВ относительно горизонтальной плоскости проекций π1 (Рисунок 2.5).

Что необходимо для построения прямой

Рисунок 2.5 – Определение истинной величины отрезка общего положения

АА1 – расстояние от точки А до плоскости проекций π1;

ВВ1 – расстояние от точки В до плоскости проекций π1;

ΔАКВ – прямоугольный треугольник, в котором:

ВК=ВВ1АА11 – второй катет, равный разности расстояний от концов отрезка АВ до плоскости π1 (то есть, разности координат Z точек А и В);

АВ – гипотенуза ΔАКВ – истинная величина.

При известных координатах концов отрезка общего положения можно на эпюре определить его истинную величину (Рисунок 2.5, б) на любой из плоскостей проекций.

Что необходимо для построения прямой

Рисунок 2.6 – Определение истинной длины и угла наклона отрезка AB к плоскости проекций π2

2.4. Точка и прямая

Если точка принадлежит прямой, то её проекции:

Что необходимо для построения прямой
Рисунок 2.7 – Принадлежность точки прямой
Точка С принадлежит отрезку АВ (Рисунок 2.7), так как:

Если точка делит отрезок в каком-либо отношении, то проекции этой точки делят одноименные проекции данного отрезка в том же отношении:

Упражнение

Разделить точкой К отрезок EF в соотношении EK:KF=1:3 (Рисунок 2.8)
Что необходимо для построения прямой
Рисунок 2.8 – Деление отрезка в заданном отношении
Решение:

Упражнение

Определить принадлежность точки С отрезку прямой АВ (Рисунок 2.9).
Что необходимо для построения прямой
Рисунок 2.9а – Решение упражнения 2. Способ 1.

Что необходимо для построения прямой
Рисунок 2.9б – Решение упражнения 2. Способ 2.

Ответ: точка С не принадлежит отрезку АВ, так как не выполняется условие принадлежности точки прямой.

2.5. Следы прямой

След прямой – точка пересечения прямой с плоскостью проекций.

Прямая общего положения в общем случае может быть три следа:

След прямой является точкой частного положения, поскольку он принадлежит плоскости проекций, следовательно, след прямой всегда совпадает с одной из своих проекций:

Что необходимо для построения прямой

Рисунок 2.10 – Построение следов отрезка прямой АВ

Построим следы отрезка АВ с плоскостями проекций (Рисунки 2.10, 2.11).

Для построения горизонтального следа прямой АB необходимо:

Чтобы построить фронтальный след отрезка АB прямой, необходимо:

Ниже приводим алгоритм построения следов отрезка прямой АВ:

Что необходимо для построения прямой
Рисунок 2.11 – Эпюр построения следов отрезка прямой АВ

Прямая, параллельная одной из плоскостей проекций, не имеет следа на плоскости, которой она параллельна, и пересекает только две плоскости. Прямая, параллельная двум плоскостям проекций (проецирующая прямая), имеет только один след, совпадающий с проекцией прямой на плоскость, к которой она перпендикулярна.

2.6. Взаимное расположение прямых

Две прямые в пространстве могут быть:

Параллельные прямые – прямые, пересекающиеся в несобственной точке.

Если прямые в пространстве параллельны, то их ортогональные проекции взаимно параллельны, или сливаются, или представляют собой точки, на одной из плоскостей проекций (Рисунок 2.12).

Что необходимо для построения прямой
Рисунок 2.12 – Параллельные прямые
Пересекающиеся прямые – прямые, имеющие одну общую точку.

Если прямые в пространстве пересекаются, то на чертеже одноименные проекции прямых пересекаются, при этом проекции точки пересечения прямых лежат на одной линии проекционной связи и делят соответствующие проекции отрезков прямых в равных отношениях (Рисунок 2.13).

Что необходимо для построения прямой
Рисунок 2.13 – Пересекающиеся прямые

Скрещивающиеся прямые – прямые, не имеющие общих точек и не удовлетворяющие признакам параллельных и пересекающихся прямых (Рисунок 2.14).

Что необходимо для построения прямой
Рисунок 2.14 — Скрещивающиеся прямые

2.7. Проекции плоских углов

Угол между двумя пересекающимися прямыми проецируется в истинную величину, если плоскость этого угла параллельна плоскости проекций.

Что необходимо для построения прямой
Рисунок 2.15

По проекциям (Рисунок 2.15) нельзя судить о величине угла между двумя прямыми. На чертежах видно, что острый угол может проецироваться в виде тупого, а тупой – в виде острого.

Теорема о проецировании прямого угла в частном случае

Что необходимо для построения прямой

Рисунок 2.16 – Проецирование прямого угла

Дано: две пересекающиеся под прямым углом прямые АВВС,

2.8. Задачи для самостоятельного решения

1. Построить отрезок прямой АВ // π1, равный 35 мм и наклонённый к π2 под углом 25° (Рисунок 2.17).

Что необходимо для построения прямой
Рисунок 2.17

2. Построить отрезок прямой CD по координатам его концов С (20; 15; 30), D (70; 40; 15) и определить истинную величину отрезка и углы наклона его к плоскостям проекций π2 и π1.

3. Постройте проекции отрезков частного положения, расположенных под углом 30° к плоскости проекций π1 и 45° — к плоскости проекций π2.

4. Определите взаимное положение прямых и постройте пересечение прямых АВ и CD прямой EF//π21 (Рисунок 2.18).

Источник

Проецирование прямой линии в начертательной геометрии с примерами

Содержание:

Проецирование прямой линии:

Отрезок прямой линии определяется двумя точками. Следовательно, проекции двух точек определяют проекции отрезка прямой (рисунок 2.1). Проекции отрезка прямой в общем случае всегда будут меньше самого отрезка прямой. В общем случае по проекциям отрезка прямой нельзя определить углы наклона отрезка прямой к плоскостям проекций.

Прямые общего и частного положения

Прямые подразделяются на прямые общего и частного положения. Прямая, не параллельная и не перпендикулярная ни одной из плоскостей проекций, называется прямой общего положения (рисунок 2.1а).

Прямые, параллельные или перпендикулярные плоскостям проекций, называются прямыми частного положения (рисунок 2.16, в). Прямые, параллельные плоскостям проекций, называются по имени плоскости, которой они параллельны: горизонталь h, фронталь f и профильная прямая w.

Прямые, перпендикулярные плоскостям проекций, называются проецирующими: горизонтально-проецирующая, фронтально-проецирующая и профильно-проецирующая, в зависимости от плоскости, к которой они перпендикулярны.

Прямые, параллельные плоскостям проекций

Особенностью эпюра прямых, параллельных плоскостям проекций, является то, что две проекции прямой параллельны осям, а третья проекция наклонена к осям и является натуральной величиной прямой. Что необходимо для построения прямой

Кроме того, по этой проекции прямой можно определить угол наклона прямой к той или иной плоскости проекций.

Среди упомянутых прямых особое место занимают горизонталь h и фронталь f (рисунок 2.2), которые обладают замечательными свойствами и поэтому часто применяются при решении различных задач.

Важнейшими свойствами горизонтали являются: фронтальная

проекция горизонтали Что необходимо для построения прямой

Что необходимо для построения прямой

Прямые, перпендикулярные плоскостям проекций

Особенностью эпюра прямых, перпендикулярных плоскостям проекций, является то, что две проекции этих прямых параллельны осям, а третья проекция «вырождается» в точку на той плоскости проекций, которой эта прямая перпендикулярна. Первые две проекции проецирующих прямых являются их натуральной величиной. На рисунке 2.3 представлены эпюры горизонтально- (а), фронтально- (б) и профильно-проецирующих прямых (в). Что необходимо для построения прямой

Определение натуральной величины прямой

Так как прямая общего положения проецируется на плоскости проекций с искажением, то задача определения натуральной величины (НВ) прямой по её проекциям является важной. С целью определения НВ прямой разработан метод прямоугольного треугольника, сущность которого понятна из пространственного чертежа (рисунок 2.4а).

При определении НВ прямой методом прямоугольного треугольника одновременно можно определить углы наклона прямой к плоскостям проекций (углы а° и Что необходимо для построения прямойОни определятся как углы между гипотенузой и соответствующей проекцией прямой.

Следы прямой

Что необходимо для построения прямой

Из пространственных чертежей следует методика построения проекций следов прямой на эпюре (рисунок 2.6).

Взаимное положение прямых

Прямые в пространстве могут быть параллельными, пересекающимися, скрещивающимися и перпендикулярными.

Пространственные чертежи и эпюры параллельных и пересекающихся прямых представлены на рисунке 2.7а, б.

Что необходимо для построения прямой

Признаком параллельных прямых на эпюре является параллельность их одноименных проекций.

Частным случаем пересекающихся прямых являются перпендикулярные прямые. В соответствии с теоремой о проецировании прямого угла, прямой угол будет проецироваться на плоскость проекций в натуральную величину в том случае, когда одна из его сторон будет параллельна этой плоскости проекций (Рисунок 2.8). Что необходимо для построения прямой

Cкрещивающимися прямыми называются непараллельные прямые, не имеющие общей точки. Скрещивающиеся прямые в пространстве не пересекаются, но на эпюре их одноименные проекции накладываются друг на друга, что создает впечатление пересечения. Признаком скрещивающихся прямых на проекциях является то, что проекции их мнимых точек пересечения не находятся на одной линии связи (рисунок 2.9а). В мнимых точках пересечения конкурируют две точки, принадлежащие разным прямым, или, другими словами, в мнимых точках конкурируют две прямые. Назовем эту область конкурирующим местом.

При рассмотрении скрещивающихся прямых возникает вопрос о видимости проекций прямых в конкурирующих местах. Этот вопрос может быть решен методом конкурирующих точек (конкурирующих прямых). Что необходимо для построения прямой

Сущность метода заключается в следующем:

Так на рисунке 2.96 на горизонтальной проекции будет видна точка 1, принадлежащая прямой AВ, или, проще говоря, прямая АВ, так как аппликата прямой АВ вдоль линии связи наибольшая. На фронтальной проекции также будет видна прямая AВ. так как у неё в конкурирующем месте наибольшая ордината.

Метод конкурирующих точек (прямых) используется и при определении видимости проекций прямой и плоскости, двух плоскостей, прямой и поверхности, ребер многогранников и т.д. При этом считается, что плоскости и поверхности геометрически непрозрачны, а видимость прямой в точке встречи с плоскостью или в точках встречи с поверхностью меняется.

На рисунке 2.10 представлена пространственная схема определения видимости проекций прямой MN и плоскости ABCD, пересекающихся друг с другом в точке К. На горизонтальной проекции в конкурирующем месте будет видна прямая ВС, так как её аппликата больше, чем у прямой MN. На фронтальной проекции в конкурирующем месте будет видна прямая MN, так как ордината у неё больше, чем у прямой АВ. Что необходимо для построения прямой

Пример: Определить длину растяжек для крепления антенны к крыше здания (рисунок 2.11).

Решение: Длина растяжек АВ и ВС определена методом прямоугольного треугольника на фронтальной проекции. Длину растяжки KD определять не следует, так как прямая KD является фронталью и её фронтальная проекция Что необходимо для построения прямойпредставляет НВ.

Пример: Построить следы прямой АВ и определить октанты, через которые проходит прямая (рисунок 2.12).

Что необходимо для построения прямой

Решение: Задача решена в пространстве и на эпюре. Так как проекции прямой пересекают оси ОХ и 0Y, то в точках пересечения и будут находится проекции горизонтального, фронтального и профильного следов прямой. Далее по знакам координат точек М, К, N, L определяем, что прямая проходит через октанты ll, I, IV и VIII.

Пример: Определить взаимное положение прямых АВ и CD (рисунок 2.13).

Что необходимо для построения прямой

Решение: Анализ проекций двух заданных прямых приводит к выводу, что они являются профильными прямыми, так как обе их проекции параллельны осям 0Y и 0Z. Анализ взаимной параллельности одноименных проекций позволяет сделать предварительный вывод о том, что прямые АВ и CD параллельны друг другу. Однако такой вывод неправомерен, так как для профильных прямых следует проверить параллельность на профильной проекции. Построив профильные проекции Что необходимо для построения прямой, видно, что прямые скрещиваются.

Пример: Разделить отрезок прямой АВ в отношении 2:3 (рисунок 2.14а). Что необходимо для построения прямой

Задача решается исключительно графическим методом. Представленное решение задачи основано на теореме Фалеса: если на одной стороне угла отложить равные или пропорциональные отрезки и провести через засечки любые параллельные прямые, то другая сторона разделится на равные или пропорциональные отрезки. На рисунке 2.14а дано решение задачи в пространственной форме, а на рисунке 2.146 представлен эпюр решения задачи. На горизонтальной проекции вспомогательная прямая m проводится под произвольно углом, и на ней откладывается пять произвольных отрезков равной длины.

На рисунке 2.14в представлены ещё два способа деления отрезка прямой в заданном отношении.

Изготовление любой детали, строительство сооружений, разработка месторождений полезных ископаемых начинается с составления чертежей, планов и схем. Никакие словесные описания не могут заменить чертеж, который позволяет не только определить форму и размеры всех частей предмета, но и получить наглядное представление о нем.

Как и любая научная дисциплина, начертательная геометрия имеет терминологию, которую следует хорошо усвоить, чтобы понимать излагаемый материал.

В геометрии вообще и в начертательной геометрии в частности каждое последующее изложение основывается на предыдущем материале. Такая особенность изучаемого предмета требует систематической, последовательной работы над ним.

Потребность в отображении действительности появилась у человека давно. Об этом свидетельствуют многочисленные изображения первобытного человека на стенах пещер и камнях, на предметах и орудиях труда. С развитием человечества совершенствовалась и техника передачи различных символов (письменность, схемы, чертежи). В Древнем Китае, например, была разработана всеобъемлющая знаковая система, где каждому предмету или явлению соответствовал особый знак (иероглиф). В Древнем Египте при возведении сооружений архитекторы использовали чертежи в виде планов и фасадов.

Основные правила и методы построения изображений (планов зданий, земельных угодий, крепостных укреплений) по законам геометрии были разработаны в эпоху античности. В Древней Греции, за 300 лет до нашей эры, сделаны первые шаги к научному обоснованию метода центрального проецирования. В «Оптике» Евклида содержатся 12 аксиом и 61 теорема об условиях «видения» предметов.

Расцвет классической культуры сменился застоем, и только в эпоху Возрождения, благодаря усилиям школ живописи и архитектуры Италии, Нидерландов и Германии, в истории начертательной геометрии начинается новый период развития. К этому времени относится введение целого ряда основных понятий метода проецирования.

С развитием архитектуры, машинного производства, горной промышленности к изображениям предметов стали предъявлять все более высокие требования, что и привело к необходимости обобщения и систематизации знаний по «теории изображений». Работа знаменитого французского геометра и инженера периода Великой французской революции Гаспара Монжа (1746-1818) «Geometrie Descriptive» (1798 г.) представляет собой первое систематическое изложение общего метода изображения пространственных фигур на плоскости, поднявшее начертательную геометрию на уровень самостоятельной научной дисциплины.

Преподавание начертательной геометрии в России началось уже в первые годы XIX в. в Корпусе инженеров путей сообщения и чуть позже в Горном кадетском корпусе. Первый русский профессор начертательной геометрии Я.И. Севастьянов (1796-1849) в 1821 г. составил курс «Основания начертательной геометрии», ставший классическим учебным пособием по этому предмету.

Среди ученых, внесших наиболее значительный вклад в развитие начертательной геометрии, следует отметить академика Е.С. Федорова (1853-1919), преподававшего в Горном институте. На примере решения задач минералогии и кристаллографии он показал применимость методов начертательной геометрии к исследованиям закономерностей материального мира.

В настоящее время начертательная геометрия является базовой общетехнической дисциплиной, составляющей основу инженерного образования. Было бы, однако, большой ошибкой ограничивать значение начертательной геометрии лишь рамками теоретической основы черчения. Ее методы дают возможность решать самые сложные проблемы в различных областях: горно-геологических науках, химии, физике и др.

Образование проекций. Методы проецирования

Основным методом получения изображений в начертательной геометрии является проецирование. Чтобы понять сущность проецирования, обратимся к рис.1.

При этом точка Что необходимо для построения прямойназывается проекцией точки Что необходимо для построения прямойна плоскости Что необходимо для построения прямой. Проекцией фигуры называется совокупность проекций всех ее точек на выбранную поверхность проецирования (например, на рис.1 проекцией треугольника Что необходимо для построения прямойна плоскости Что необходимо для построения прямойявляется треугольник Что необходимо для построения прямой). Описанный метод проецирования путем проведения проецирующих прямых через точки заданной фигуры и центр проецирования называется центральным.

Если направление параллельного проецирования перпендикулярно плоскости проекций, то проецирование называется прямоугольным или ортогональным. Во всех остальных случаях параллельное проецирование называется косоугольным.

Что необходимо для построения прямой

Изображения, полученные при помощи центрального проецирования, отличаются хорошей наглядностью, что объясняется устройством зрительного аппарата человеческого глаза. Однако этот метод имеет существенные недостатки. Во-первых, сложно построить изображение предмета. Во-вторых, построенные проекции имеют низкие метрические свойства, поэтому вследствие значительных искажений, возникающих при данном методе проецирования, определить истинные размеры предмета весьма сложно. По этим причинам способ центрального проецирования имеет ограниченное применение в практике и используется, когда от чертежа требуется прежде всего наглядность.

Несмотря на то, что параллельное проецирование, по сравнению с центральным, имеет меньшую наглядность, параллельные проекции, особенно ортогональные, обладают лучшей измеримостью и простотой построения.

Задачи, решаемые методами начертательной геометрии, принято делить на метрические и позиционные.

Позиционные задачи позволяют определить взаимное расположение различных объектов: точек, прямых линий, плоскостей, пространственных фигур. К этой категории задач относятся, например, установление точки встречи буровой скважины с плоскостью залежи, построение линии пересечения кровли и подошвы пласта полезного ископаемого с горной выработкой и многие другие.

Для быстрого и удобного решения пространственных задач в начертательной геометрии используют несколько систем изображений, особенности которых приведены в табл.1.

Таблица 1

Основные системы изображения, используемые при проецировании

Что необходимо для построения прямой

Область применения той или иной системы изображений зависит, прежде всего, от целей, которые ставятся при построении чертежа. Из представленных в табл.1 систем наиболее широкое применение в техническом проектировании имеет эпюр (ортогональный чертеж). На его основе выполняются рабочие и сборочные чертежи, эскизы деталей, схемы и т.д. Поэтому в дальнейшем изложении курса основное внимание будет уделено именно этому методу построения.

Ортогональный чертеж. Проецирование точки

Любой предмет пространства можно рассматривать как определенную совокупность отдельных точек этого пространства, поэтому для изображения различных предметов необходимо научиться строить изображения отдельной точки пространства.

Представим в пространстве три взаимно перпендикулярные плоскости (рис.3):

Для наглядного изображения плоскостей проекций взята кабинетная проекцияЧто необходимо для построения прямой, известная из курсов геометрии и черчения средней школы.

Что необходимо для построения прямойКабинетная проекция относится к числу косоугольных, более подробно она будет рассмотрена в разделе «Аксонометрические проекции».

Представим себе также в пространстве некоторую точку Что необходимо для построения прямой. Чтобы получить проекцию точки Что необходимо для построения прямойна горизонтальной плоскости проекций, необходимо провести через эту точку проецирующую прямую, перпендикулярную плоскости Что необходимо для построения прямойи найти точку пересечения Что необходимо для построения прямойэтой прямой с плоскостью Что необходимо для построения прямой. Точка Что необходимо для построения прямойназывается горизонтальной проекцией точки Что необходимо для построения прямой. Путем ортогонального проецирования точки Что необходимо для построения прямойна фронтальную и профильную плоскости проекций образуются ее фронтальная и профильная проекции (соответственно точки Что необходимо для построения прямойи Что необходимо для построения прямой).

Длины отрезков, измеряемые некоторой установленной единицей длины и равные расстояниям от точки Что необходимо для построения прямойдо горизонтальной, фронтальной и профильной плоскостей проекций, называются прямоугольными (декартовыми) координатами:

Три координаты точки однозначно определяют ее положение в пространстве.

Взаимно перпендикулярные плоскости, изображенные на рис.3, дают нам пространственный чертеж. Для получения трех проекций точки в плоскости чертежа плоскости проекций Что необходимо для построения прямой, Что необходимо для построения прямойи Что необходимо для построения прямойусловно совмещают с плоскостью чертежа. Это совмещение выполняется следующим образом.

Что необходимо для построения прямой

Фронтальная плоскость проекций Что необходимо для построения прямойпринимается за плоскость чертежа, горизонтальная плоскость проекций Что необходимо для построения прямойсовмещается с плоскостью чертежа вращением вокруг оси Что необходимо для построения прямой, а профильная плоскость проекций Что необходимо для построения прямой— вращением вокруг оси Что необходимо для построения прямой. Направление вращения на рис.3 показано стрелками.

Любые две проекции точки, изображенные на эпюре, связаны между собой линией проекционной связи, перпендикулярной оси проекций (на чертеже ее обозначают штриховой линией):

Вследствие того, что отрезки Что необходимо для построения прямойи Что необходимо для построения прямойявляются изображением одной и той же координаты Что необходимо для построения прямой, точки Что необходимо для построения прямойи Что необходимо для построения прямойсвязывают дугой окружности с центром в начале координат.

Каждая проекция точки Что необходимо для построения прямойопределяется двумя координатами: горизонтальная проекция Что необходимо для построения прямой— координатами Что необходимо для построения прямой; фронтальная проекция Что необходимо для построения прямойЧто необходимо для построения прямой, профильная проекция Что необходимо для построения прямойЧто необходимо для построения прямой.

Положение точки Что необходимо для построения прямойможет быть задано как графически, так и аналитически. Пример графического изображения точки Что необходимо для построения прямойрассмотрен нами на рис.3. Аналитическая форма задания точки представляет собой числовое выражение трех координат точки Что необходимо для построения прямойв выбранных единицах длины. Например, запись Что необходимо для построения прямойозначает, что Что необходимо для построения прямой.

От аналитической формы задания точки легко перейти к графическому изображению этой точки на ортогональном чертеже.

Пример 1. Построить проекции точки Что необходимо для построения прямой.

1. Выбираем единичный отрезок (рис.4).

2. С учетом знака откладываем на осях проекций координатные отрезки:

Что необходимо для построения прямой

3. Отмечаем точки Что необходимо для построения прямой.

4. Из построенных точек Что необходимо для построения прямой— проводим линии проекционной связи, перпендикулярные осям проекций, и на их пересечениях отмечаем проекции точки Что необходимо для построения прямой:

Что необходимо для построения прямой

Что необходимо для построения прямой

Две проекции точки, построенные на эпюре, однозначно определяют ее положение в пространстве. По двум проекциям заданной точки можно построить третью, и притом только одну.

Пример 2. Построить третью проекцию точки Что необходимо для построения прямойпо двум заданным (рис.5).

1. Даны фронтальная и профильная проекции точки Что необходимо для построения прямой: фронтальная проекция Что необходимо для построения прямойопределяется координатами Что необходимо для построения прямой,

Что необходимо для построения прямой

профильная проекция Что необходимо для построения прямойопределяется координатами Что необходимо для построения прямой

Что необходимо для построения прямой

2. Из имеющихся проекций проводим линии проекционной связи, перпендикулярные осям проекций, и определяем координатные отрезки Что необходимо для построения прямойравные соответствующим координатам точки Что необходимо для построения прямой:

Что необходимо для построения прямой

3. На пересечении линий проекционной связи с осями проекций отмечаем точки Что необходимо для построения прямой.

4. Строим третью, горизонтальную проекцию точки Что необходимо для построения прямой(рис.6). Горизонтальная проекция Что необходимо для построения прямойопределяется координатами

Что необходимо для построения прямой

При определении точки Что необходимо для построения прямойпо Что необходимо для построения прямойперенос осуществляется с оси Что необходимо для построения прямойна соответствующее по знаку направление оси Что необходимо для построения прямой.

В зависимости от расположения точки относительно плоскостей проекций различают:

1) точки общего положения, не принадлежащие плоскостям проекций (к ним относится, например, точка А на рис.3);

2) точки частного положения, лежащие в плоскостях проекций Что необходимо для построения прямой, на осях проекций Что необходимо для построения прямойили в начале координат.

У точки общего положения все три координаты отличны от нуля.

Если точка лежит в плоскости проекций, то ее координата по оси, перпендикулярной этой плоскости проекций, равна нулю. Если точка лежит на оси проекций, то две другие ее координаты равны нулю. Если все три координаты точки равны нулю, то точка лежит в начале координат.

Рассмотрим некоторые частные случаи положения точки: когда точка лежит в какой-нибудь плоскости проекций или на какой-нибудь оси проекций.

Точка Что необходимо для построения прямойрис.7 принадлежит горизонтальной плоскости проекций. Горизонтальная проекция Что необходимо для построения прямойэтой точки совпадает с самой точкой, фронтальная проекция Что необходимо для построения прямойлежит на оси Что необходимо для построения прямой, а профильная проекция Что необходимо для построения прямой— на оси Что необходимо для построения прямой. Координата точки Что необходимо для построения прямойпо оси Что необходимо для построения прямойравна нулю, и, следовательно, точка Что необходимо для построения прямойлежит в начале координат.

Что необходимо для построения прямой

Что необходимо для построения прямой

Октанты

Нумерация октантов в полупространствах приведена на рис.9. Знаки координат в каждом из октантов указаны в табл.2.

Что необходимо для построения прямой

Таблица 2

Знаки прямоугольных координат в различных октантах

Что необходимо для построения прямой

Проекции отрезка прямой линии. Точка на прямой

Прямую линию можно рассматривать как совокупность точек. Из школьного курса геометрии известно, что через две точки можно провести прямую и притом только одну.

Пусть нам даны на эпюре точки Что необходимо для построения прямойи Что необходимо для построения прямой. Две проекции каждой из этих точек однозначно определяют их положение в пространстве (рис.10). Если мы соединим одноименные проекции точек, то получим проекции прямой. Точки Что необходимо для построения прямойи Что необходимо для построения прямойограничивают отрезок прямой и определяют положение этой прямой как бесконечной линии.

Таким образом, прямая линия на эпюре может быть задана двумя проекциями отрезка, принадлежащего этой прямой. По двум проекциям отрезка всегда можно построить его третью проекцию и притом только одну.

Что необходимо для построения прямой

Точка принадлежит прямой линии, если ее проекции лежат на одноименных проекциях этой линии.

Если на прямой Что необходимо для построения прямоймы выберем какую-либо точку Что необходимо для построения прямой, то проекции этой точки будут лежать на одноименных проекциях прямой (рис.11).

Что необходимо для построения прямой

Таким образом, если точка принадлежит заданной прямой, то для построения проекций этой точки на эпюре необходимо и достаточно знать положение хотя бы одной проекции точки, поскольку недостающие проекции легко найти в пересечении линий проекционной связи с соответствующими проекциями прямой.

Прямые частного положения

Прямая, параллельная одной или двум плоскостям проекций, называется прямой частного положения.

Если прямая параллельна двум плоскостям проекций, т.е. перпендикулярна третьей плоскости проекций, то на эти две плоскости проекции прямая проецируется в натуральную величину, а третья проекция представляет собой точку. Такие прямые называют проецирующими.

Что необходимо для построения прямой

Что необходимо для построения прямой

Определение натуральной величины отрезка прямой общего положения методом прямоугольного треугольника

Ортогональная проекция отрезка прямой общего положения на любую плоскость проекций всегда меньше длины самого отрезка. Рассмотрим правила определения натуральной величины отрезка прямой методом прямоугольного треугольника.

Предположим, что точки Что необходимо для построения прямойи Что необходимо для построения прямойлежат в I октанте (рис.17). Соединим эти точки и получим отрезок некоторой прямой Что необходимо для построения прямой. Построим горизонтальную и фронтальную проекции этой прямой. Из точки Что необходимо для построения прямойпроведем линию, параллельную Что необходимо для построения прямой, которая в пересечении с линией проекционной связи даст точку Что необходимо для построения прямой.

Рассмотрим стороны прямоугольного треугольника Что необходимо для построения прямой:

Истинную величину отрезка можно определить, построив прямоугольный треугольник, катетом которого является и фронтальная проекция отрезка (рис.18): при этом второй катет окажется равным разности координат Что необходимо для построения прямой. Для треугольника, построенного на профильной проекции отрезка, вторым катетом будет разность координат Что необходимо для построения прямой.

Что необходимо для построения прямой

На рис.18 истинная величина отрезка Что необходимо для построения прямойопределена три раза: гипотенузы построенных прямоугольных треугольников имеют равную длину и все они определяют истинную величину отрезка Что необходимо для построения прямой.

Что необходимо для построения прямой

Таблица 3

Геометрические элементы при определении истинной величины отрезка примой Что необходимо для построения прямойметодом прямоугольного треугольника

Что необходимо для построения прямой

Координаты концов отрезка могут иметь разные знаки. Тогда разность координат определяется с учетом знака. Например, если координата Что необходимо для построения прямойточки Что необходимо для построения прямойположительная, а точки Что необходимо для построения прямойотрицательная, то разность координат

Что необходимо для построения прямой

Пример 3. Определить истинную величину отрезка Что необходимо для построения прямойи угол наклона прямой к плоскости Что необходимо для построения прямой(рис.19).

Что необходимо для построения прямой

2. Определяем координаты по оси Что необходимо для построения прямойточек Что необходимо для построения прямойи Что необходимо для построения прямойи их разность:

Что необходимо для построения прямой

3. Строим прямоугольный треугольник, в котором за катет принимаем горизонтальную проекцию Что необходимо для построения прямой. В качестве второго катета откладываем расстояние, равное Что необходимо для построения прямой.

Следы прямой

Следом прямой называется точка пересечения прямой линии с плоскостью проекций. Прямая общего положения пересекает все три плоскости проекций и, следовательно, имеет три следа. Прямая линия частного положения не имеет следа на плоскости проекций, если она параллельна этой плоскости.

Выберем две точки, точку Что необходимо для построения прямой, лежащую в плоскости проекций Что необходимо для построения прямойи точку Что необходимо для построения прямой— в плоскости проекций Что необходимо для построения прямой(рис.20). Через эти точки проведем прямую.

Следы прямой совпадают с проекциями этих следов в той плоскости, где они расположены: Что необходимо для построения прямой.

Поскольку точка Что необходимо для построения прямойлежит в плоскости Что необходимо для построения прямой, ее фронтальная проекция Что необходимо для построения прямойрасполагается на оси Что необходимо для построения прямой, а профильная Что необходимо для построения прямой— на оси Что необходимо для построения прямой. Горизонтальная проекция Что необходимо для построения прямойточки Что необходимо для построения прямойтакже располагается на оси Что необходимо для построения прямой, а профильная проекция Что необходимо для построения прямойлежит на оси Что необходимо для построения прямой. Горизонтальная проекция профильного следа Что необходимо для построения прямойлежит на оси Что необходимо для построения прямой, а фронтальная проекция Что необходимо для построения прямой— на оси Что необходимо для построения прямой.

Охарактеризуем особенности построения каждой проекции каждого из трех следов на ортогональном чертеже (рис.20).

Горизонтальный след Что необходимо для построения прямой:

Что необходимо для построения прямой

Фронтальный след Что необходимо для построения прямой:

Профильный след Что необходимо для построения прямой:

Необходимо отметить, что построение профильных проекций следов Что необходимо для построения прямойможет проводиться по двум уже построенным проекциям (горизонтальной и фронтальной), как было показано в разделе 1.2.

Пример 4. Построить проекции следов прямой Что необходимо для построения прямой(рис.21).

1. Находим фронтальную проекцию горизонтального следа Что необходимо для построения прямой, продолжив Что необходимо для построения прямойдо пересечения с осью Что необходимо для построения прямой.

2. Из точки Что необходимо для построения прямойпроводим линию проекционной связи до ее пересечения с продолжением Что необходимо для построения прямойЗдесь расположена точка Что необходимо для построения прямой.

4. Находим горизонтальную проекцию фронтального следа Что необходимо для построения прямойв пересечении Что необходимо для построения прямойс осью Что необходимо для построения прямой.

5. Из точки Что необходимо для построения прямойпроводим линию проекционной связи до ее пересечения с фронтальной проекцией прямой Что необходимо для построения прямойи получаем точку Что необходимо для построения прямой.

7. В пересечении Что необходимо для построения прямойс осью Что необходимо для построения прямойстроим точку Что необходимо для построения прямой(горизонтальную проекцию профильного следа).

9. По двум проекциям Что необходимо для построения прямойи Что необходимо для построения прямойстроим профильную проекцию профильного следа Что необходимо для построения прямойЧто необходимо для построения прямой.

Взаимное положение двух прямых

Две прямые могут пересекаться, быть параллельными друг другу и скрещиваться.

Пересекающиеся прямые имеют одну общую точку. Если прямые линии пересекаются, то одноименные проекции этих прямых тоже пересекаются (рис.22, а), причем проекции точки пересечения лежат на одной линии проекционной связи.

Параллельные прямые лежат в одной плоскости и не имеют общих точек. Одноименные проекции двух параллельных прямых параллельны между собой (рис.22, б).

Скрещивающиеся прямые, в отличие от пересекающихся и параллельных прямых, не лежат в одной плоскости. Хотя одноименные проекции двух скрещивающихся прямых и могут пересекаться, но точки их пересечения не лежат на одной линии проекционной связи (рис.22, в).

Что необходимо для построения прямойПри помощи конкурирующих точек определяется взаимная видимость прямых и плоскостей относительно друг друга.

Проецирование плоских углов

Что необходимо для построения прямой

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *