Что необходимо для построения новых клеток и тканей
Белки, жиры, углеводы. Справка
В пищеварительном тракте белки расщепляются до аминокислот и простейших полипептидов, из которых в дальнейшем клетками различных тканей и органов, в частности печени, синтезируются специфические для них белки. Синтезированные белки используются для восстановления разрушенных и роста новых клеток, синтеза ферментов и гормонов.
Функции белков:
1. Основной строительный материал в организме.
2. Являются переносчиками витаминов, гормонов, жирных кислот и др. веществ.
3. Обеспечивают нормальное функционировании иммунной системы.
4. Обеспечивают состояние «аппарата наследственности».
5. Являются катализаторами всех биохимических метаболических реакций организма.
Организм человека в нормальных условиях (в условиях, когда нет необходимости пополнения дефицита аминокислот за счет распада сывороточных и клеточных белков) практически лишен резервов белка (резерв – 45 г: 40 г в мыщцах, 5 г в крови и печени), поэтому единственным источником пополнения фонда аминокислот, из которых синтезируются белки организма, могут служить только белки пищи.
Вне зависимости от видоспецифичности все многообразные белковые структуры содержат в своем составе всего 20 аминокислот.
Различают заменимые аминокислоты (синтезируются в организме) и незаменимые аминокислоты (не могут синтезироваться в организме, а поэтому должны поступать в организм в пищей). К незаменимым аминокислотам относятся: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин.
Недостаток незаменимых аминокислот в пище приводит к нарушениям белкового обмена.
Незаменимыми аминокислотами являются валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, цистеин, незаменимыми условно — аргинин и гистидин. Все эти аминокислоты человек получает только с пищей.
Заменимые аминокислоты также необходимы для жизнедеятельности человека, но они могут синтезироваться и в самом организме из продуктов обмена углеводов и липидов. К ним относятся гликокол, аланин, цистеин, глутаминовая и аспарагиновая кислоты, тирозин, пролин, серин, глицин; условно заменимые — аргинин и гистидин.
Белки, в которых нет хотя бы одной незаменимой аминокислоты или если они содержатся в недостаточных количествах называются неполноценными (растительные белки). В связи с этим для удовлетворения потребности в аминокислотах наиболее рациональной является разнообразная пища с преобладанием белков животного происхождения.
Функции жиров в организме:
• являются важнейшим источником энергии. При окислении 1 г вещества выделяется максимальное по сравнению с окислением белков и углеводов количество энергии. За счёт окисления нейтральных жиров образуется 50% всей энергии в организме;
• являются компонентом структурных элементов клетки — ядра, цитоплазмы, мембраны;
• депонированные в подкожной клетчатке, предохраняют организм от потерь тепла, а окружающие внутренние органы — от механических повреждений.
Различают нейтральные жиры (триацилглицеролы), фосфолипиды, стероиды (холестерин).
Уровень жирных кислот в организме регулируется как отложением (депонированием) их в жировой ткани, так и высвобождением из нее. По мере увеличения уровня глюкозы в крови жирные кислоты под влиянием инсулина, депонируются в жировой ткани.
Высвобождение жирных кислот из жировой ткани стимулируется адреналином, глюкагоном и соматотропым гармоном, тормозится — инсулином.
Жиры, как энергетический материал используется главным образом при выполнении длительной физической работы умеренной и средней интенсивности (работа в режиме аэробной производительности организма). В начале мышечной деятельности используются преимущественно углеводы, но по мере уменьшения их запасов начинается окисление жиров.
Обмен липидов тесно связан с обменом белков и углеводов. Поступающие в избытке в организм углеводы и белки превращаются в жир. При голодании жиры, расщепляясь, служат источником углеводов.
Жирные кислоты являются основными продуктами гидролиза липидов в кишечнике. Большую роль в процессе всасывание жирных кислот играют желчь и характер питания.
К незаменимым жирным кислотам, которые не синтезируются организмом, относятся олеиновая, линолевая, линоленовая и арахидовая кислоты (суточная потребность 10–12 г).
Линолевая и лоноленовая кислоты содержатся в растительных жирах, арахидовая — только в животных.
Недостаток незаменимых жирных кислот приводит к нарушению функций почек, кожным нарушениям, повреждениям клеток, метаболическим расстройствам. Избыток незаменимых жирных кислот приводит к повышенной потребности токоферола (витамина Е).
Функции углеводов в организме:
• Являются непосредственным источником энергии для организма.
• Участвуют в пластических процессах метаболизма.
• Входят в состав протоплазмы, субклеточных и клеточных структур, выполняют опорную функцию для клеток.
Углеводы делят на 3 основных класса: моносахариды, дисахариды и полисахариды.
На углеводы должно приходиться до 50 – 60% энергоценности пищевого рациона.
В пищеварительном тракте полисахариды (крахмал, гликоген; клетчатка и пектин в кишечнике не перевариваются ) и дисахариды под влиянием ферментов подвергаются расщеплению до моносахаридов (глюкоза и фруктоза) которые в тонком кишечнике всасываются в кровь. Значительная часть моносахаридов поступает в печень и в мышцы и служат материалом для образования гликогена.
В печени и мышцах гликоген откладывается в резерв. По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.
Содержание гликогена в печени составляет 150–200 г.
Продукты распада белков и жиров могут частично в печени превращаться в гликоген. Избыточное количество углеводов превращается в жир и откладывается в жировом «депо».
Около 70% углеводов пищи окисляется в тканях до воды и двуокиси углерода.
Углеводы используются организмом либо как прямой источник тепла (глюкозо–6–фосфат), либо как энергетический резерв (гликоген);
Основные углеводы – сахара, крахмал, клетчатка – содержатся в растительной пище, суточная потребность в которой у человека составляет около 500 г (минимальная потребность 100–150 г/сут).
При недостаточности углеводов развивается похудание, снижение трудоспособности, обменные нарушения, интоксикация организма.
Избыток потребления углеводов может привести к ожирению, развитию бродильных процессов в кишечнике, повышенной аллергизации организма, сахарному диабету.
Материал подготовлен на основе информации из открытых источников
Искусственные органы и ткани: когда мы сможем купить запчасти для собственного тела
Каждый из нас когда-нибудь задумывался о бренности своего тела. У одних такие мысли появились, когда у них выпал первый молочный зуб, у других — когда они нашли у себя первый седой волос, у третьих — когда кожа стала тонкой и морщинистой, а суставы перестали сгибаться. А что, если можно было бы менять органы, как запчасти в машине? Ожог 80 % поверхности тела — натянем новую кожу, отказал какой-то внутренний орган — не беда, заменим, будет как новенький!
Долгое время такие идеи были прерогативой писателей-фантастов и встречались лишь в мифах — например, согласно Махабхарате (привет, РЕН ТВ!) дети царя Дхритараштры были выращены в «биореакторах» из бесформенных кусков плоти.
Но всё начало меняться в первой половине ХХ века. В это время активно работал ученый-биолог Алексис Каррель, личность крайне интересная: любитель евгеники, лауреат Нобелевской премии по физиологии и медицине 1912 года, член фашистской партии Франции (PPF) и иностранный член-корреспондент АН СССР. Он первым доказал, что можно долгое время поддерживать жизнедеятельность изолированных клеток и тканей вне организма человека. Посмертную оценку его работы провел американский ученый Ян Витковский, который в своей статье «Бессмертные клетки доктора Карреля» изложил почти детективную историю о началах регенеративной медицины и клеточном старении вообще.
В 1970–1980-х годах в исследованиях стволовых клеток произошел бум. Теории о неких «клетках-прародителях», из которых развивается всё разнообразие тканей организма, появлялись в научной среде еще с XIX века, однако экспериментальное подтверждение появилось только в 1963 году для мышей и в 1978 году для людей. Одновременно с этим ученый-цитолог Джуда Фолкман открыл механизмы клеточной дифференцировки — это процесс, во время которого неспециализированные стволовые клетки специализируются и могут превратиться в клетку любой ткани. Фолкман обнаружил, что для этого необходимы химические сигнальные факторы. Именно тогда появились первые проекты так называемых матриксов для изучения роста клеток не на плоском дне культурального флакона, а в объемной трехмерной среде.
Наши ткани состоят не столько из клеток, прижатых вплотную друг к дружке, сколько из того самого внеклеточного матрикса — будь то коллагеновые волокна или апатитная губка, как, например, в костях.
Чтобы вырастить на его основе какую-либо ткань или орган, нужно максимально бережно этот матрикс обесклеточить — обработать его серией растворов, содержащих додецилсульфат натрия (SDS). По сути, мы должны промыть кусок ткани с помощью «клеточного „Фейри“» (и это не шутка, SDS входит в состав большинства моющих средств), при этом жировые мембраны клеток растворяются, а поддерживающий их внеклеточный каркас остается нетронутым.
Дело в том, что даже при удалении клеток мы оставляем белковые гормоны (то есть факторы роста, факторы дифференцировки), которые успели осесть на коллагеновом каркасе, нетронутыми. Поэтому выделенная из организма пациента стволовая клетка, попадая в этот матрикс, сразу «понимает», во что ей дальше превращаться: «Так, я в коллагеновой среде, а вокруг меня много молекул VEGF (фактора роста внутренней поверхности сосудов), значит, я должна превратиться в стенку сосуда». Подробнее о том, как клетки дифференцируются на матриксе из обесклеточенных органов, можно узнать из презентации SENS Foundation:
Эта конференция состоялась еще в 2011 году. Сейчас группа Шая Сокера (докладчика на видео) занимается биосенсорами и платформами скрининга лекарственных веществ на искусственных органах и тканях.
Справедливости ради нужно отметить, что иногда клетки сажают и на биосовместимый полимер. Одним из первых успешных опытов было создание новой легочной артерии: ученые взяли кусок периферической вены и выделили из него клетки, которые могут стать стенкой сосуда.
Эти клетки были «засеяны» на полимерную трубку, которую после небольшого периода культивирования вживили на место пораженной артерии. Трубка-матрикс была сделана из материала, который постепенно растворялся в организме, а полимер заменялся на коллаген по мере дальнейшего роста клеток и регенерации сосуда. В этом эксперименте всё прошло более или менее успешно, однако нужно делать скидку на то, что пациенту было всего 4 года — у молодого организма все-таки гораздо больший потенциал к регенерации, чем у старого.
В случаях с более объемными органами на помощь приходит техника обесклеточивания (децеллюляризации). Здесь и всплывает имя скандально известного хирурга Паоло Маккиарини. Он первым пересадил человеку донорскую трахею, взятую из трупного материала, но пациентка умерла после операции. Есть мнение, что всему виной был обычный бактериальный сепсис, который закончился фатально. Маккиарини провел несколько таких экспериментальных операций, часть из которых прошла без серьезных осложнений, хотя некоторые коллеги называли его деятельность этическим Чернобылем.
Для большинства пациентов искусственная трахея была единственным способом продлить жизнь. При этом они страдали множеством сопутствующих заболеваний, которые сами по себе могли стать фактором, ухудшившим их состояние после трансплантации. Кроме того, одной из претензий этических комитетов к Маккиарини было то, что при каждой операции он применял новую экспериментальную методику: якобы смена способов и материалов для трахеи свидетельствовала о том, что хирург не знал, что делает. Комиссия в своем отчете заявила, что использовать непроверенные методики даже тогда, когда человек мог умереть с высокой степенью вероятности и при любом другом лечении, недопустимо.
Тем не менее при пересадке органов и тканей, полученных при помощи обесклеточивания, небольшие воспаления — нормальное явление. Каждый день в нашем организме образуется множество потенциально раковых и сенесцентных (старых) клеток, которые могут либо начать бесконтрольно делиться, либо выделять малоизученные пока «факторы старения». Наши иммунные клетки, циркулируя по кровеносным сосудам, каждый день эффективно находят и убивают эти клетки. Но если ткани выращиваются «в биореакторе», такой отбраковки не происходит, и, когда новый орган подключается к кровеносной системе, иммунные клетки буквально сходят с ума от обилия «некачественных» клеток в пересаженных тканях.
К счастью, модели тканей и органов, выращенные на коллагеновом каркасе из донорского материала, можно успешно использовать в доклинических испытаниях лекарственных веществ. Теоретически это даже может дать более точные результаты, чем испытание на клеточной монокультуре.
Что же касается прикладных успехов биотрансплантации, то стоит начать с козырей — бьющегося мышиного сердца. Его вырастили с помощью обесклеточивания с последующим засевом стволовыми клетками:
Конечно, оно пока не способно эффективно качать кровь и сокращается не очень ритмично, но сам принцип выращивания в пробирке сложных органов, состоящих из нескольких типов тканей, уже работает.
В чем же подвох? Почему бы просто не пересадить сердце от здорового донора? Дело в том, что тканевую несовместимость еще никто не отменял: провести всю оставшуюся жизнь на иммуносупрессивных препаратах для профилактики отторжения — так себе вариант. Более того, препараты, угнетающие иммунитет, делают больного более восприимчивым к инфекциям, которые здоровому человеку не страшны, и уязвимым перед условно-патогенными микроорганизмами. Если пациент не в критическом состоянии и у него есть еще минимум месяц жизни, то новая технология выращивания органов не только спасет его, но и полностью уберет риск осложнений — ведь для этой процедуры подойдет сердце практически любого донора. Причем этот вариант устроит не только клиницистов (поддерживать «жизнь» донора со смертью мозга непросто), но и биоэтиков: орган можно взять у донора, уже направляющегося в морг, без введения дополнительных шатких критериев биологической смерти.
В начале статьи мы упоминали механические протезы и их недостатки. Если откажет, например, искусственный клапан сердца, пациенту смогут помочь только в узкоспециализированной клинике — в медицинской литературе описано много случаев заедания створок механического клапана. А вот донорский или искусственно выращенный орган больного сможет спасти любой квалифицированный врач.
А вот большая часть разработок, которые уже используются, пока имеет лишь статус экспериментального лечения. Еще с 1990-х годов в комбустиологии (раздел медицины, занимающийся изучением ожоговых травм) известна методика «кожного спрея» : врач берет кусочек кожи, растворяет его до однородной клеточной суспензии, а потом наносит ее на пораженные поверхности. Сейчас ее используют в западных странах.
Существует также технология «ксенокожи» : новые кожные покровы выращиваются на матриксе из кожи мутантных свиней, у которых отсутствует галактозилтрансфераза — фермент, провоцирующий иммунный ответ у человека. Существует также несколько других коммерчески доступных методик производства кожи из клеток пациента: Epicel (EPIBASE, EpiDex), MySkin, Laserskin (Vivo-derm), Bioseed-S и CellSpray.
Сейчас проходят клинические испытания новые способы лечения небольших структурных дефектов внутренних органов с помощью стволовых клеток. Уже коммерчески доступны ECM-материалы на основе обесклеточенных матриксов мочевых пузырей свиней.
А вот с сердцем, легкими, почками и другими востребованным органами пока что не очень, увы. Большая часть современных разработок в области регенеративной медицины пока что находится лишь на стадии клинических испытаний. И к большому сожалению, если кому-то необходима такая помощь, остается лишь постоянно мониторить сайты крупных западных медцентров, специализирующихся на такого рода вещах.
Клеточная инженерия. Клетки и ткани, методы культивирования
» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>
Клеточная инженерия. Клетки и ткани, методы культивирования
Клеточная инженерия — одно из наиболее важных направлений в биотехнологии. Она основана на использовании принципиально нового объекта — изолированной культуры клеток или тканей эукариотических организмов, а также на тотипотентности — уникальном свойстве растительных клеток. Применение этого объекта раскрыло большие возможности в решении глобальных теоретических и практических задач. В области фундаментальных наук стало осуществимым исследование таких сложных проблем, как взаимодействие клеток в тканях, клеточная дифференциров-ка, морфогенез, реализация тотипотентности клеток, механизмы появления раковых клеток и др. При решении практических задач основное внимание уделяется вопросам селекции, получения значительных количеств биологически ценных метаболитов растительного происхождения, в частности более дешевых лекарств, а также выращивания оздоровленных безвирусных растений, их клонального размножения и др.
КУЛЬТУРА КЛЕТОК И ТКАНЕЙ, КРАТКАЯ ИСТОРИЯ ПРЕДМЕТА
Бурное развитие клеточной инженерии приходится на 50-е годы прошлого века, хотя первые попытки выращивания изолированных кусочков ткани были сделаны гораздо раньше. В конце XIX — начале XX в. немецкие ученые X. Фехтинг (1892), С. Рехингер (1893), Дж. Хаберландт (1902) сделали первую неудачную попытку стимуляции роста растительных тканей и органов, помещенных на фильтровальную бумагу, пропитанную сахарозой. Несмотря на отсутствие положительного результата, их работы представляют большой интерес. В них были высказаны идеи, которые намного опередили развитие науки того времени и которые нашли свое подтверждение несколько десятилетий спустя. Так, Фехтинг предположил, что полярность присуща не только организму или органу растения, но и самой клетке. Рехингер определил минимальный размер сегмента, образующего каллус. Согласно его исследованиям, в кусочках ткани тоньше 1,5 — 2,0 мм клетки не делились. Хаберландт впервые четко сформулировал идеи о возможности культивирования in vitro изолированных клеток растений и о тотипотентности клеток, т. е. способности любой соматической клетки полностью реализовывать свой потенциал развития. Иначе говоря, о способности каждой растительной клетки давать начало целому организму.
Первые успехи были получены в 1922 г. американским ученым В.Роббинсом и немецким ученым В.Котте. Независимо друг от друга они показали возможность выращивания меристем кончиков корней томатов и кукурузы на синтетической питательной среде. Считается, что их работы легли в основу метода культуры изолированных корней растения.
Настоящее развитие метода культуры тканей и клеток высших растений началось в 1932 г. с работ французского ученого Р. Готре и американского исследователя Ф.Уайта. Они показали, что при периодической пересадке на свежую питательную среду кончики корней могут расти неограниченно долго. Кроме того, ими были разработаны методы культивирования новых объектов: тканей древесных растений камбиального происхождения, каллусных тканей запасающей паренхимы (Р. Готре), а также тканей растительных опухолей (Ф.Уайт). С этого момента начинаются массовые исследования по разработке новых питательных сред, включающих даже такие неконтролируемые компоненты, как березовый сок или эндосперм кокоса, и по введению в культуру новых объектов. К 1959 г. насчитывалось уже 142 вида высших растений, выращиваемых в стерильной культуре.
В 1955 г. после открытия Ф. Скугом и С. Миллером нового класса фитогормонов — цитокининов — оказалось, что при совместном их действии с другим классом фитогормонов — ауксинами — появилась возможность стимулировать деление клеток, поддерживать рост каллусной ткани, индуцировать морфогенез в контролируемых условиях.
В 1959 г. был предложен метод выращивания больших масс клеточных суспензий. Важным событием стала разработка Е. Коккин-гом (Ноттингемский университет, Великобритания) в 1960 г. метода получения изолированных протопластов. Это послужило толчком к получению соматических гибридов, введению в протопласты вирусных РНК, клеточных органелл, клеток прокариот. В это же время Дж. Морелом и Р. Г. Бутенко был предложен метод кло-нального микроразмножения, который сразу же нашел широкое практическое применение. Весьма важным достижением в развитии технологий культивирования изолированных тканей и клеток стало культивирование одиночной клетки с помощью ткани-«няньки». Этот метод был разработан в России в 1969 г. в Институте физиологии растений им. К.А.Тимирязева РАН под руководством Р. Г. Бутенко. В последние десятилетия продолжается быстрый прогресс технологий клеточной инженерии, позволяющих значительно облегчить селекционную работу. Большие успехи достигнуты в развитии методов получения трансгенных растений, технологий использования изолированных тканей и клеток травянистых растений, начато культивирование тканей древесных растений.
МЕТОДЫ И УСЛОВИЯ КУЛЬТИВИРОВАНИЯ ИЗОЛИРОВАННЫХ ТКАНЕЙ И КЛЕТОК РАСТЕНИЙ
Выращивание изолированных клеток и тканей на искусственных питательных средах в стерильных условиях (in vitro) получило название метода культуры изолированных тканей.
В связи с тем что в жизни человека наибольшее значение имеют семенные растения, методы и условия для их культивирования разработаны лучше, чем для голосеменных растений или водорослей, выращивание которых в стерильных условиях вызывает определенные затруднения. Однако независимо от принадлежности растений к той или иной таксономической группе существуют общие требования к выращиванию объектов в культуре in vitro.
Асептика. Прежде всего культивирование фрагментов ткани или органа растения — эксплантов, а тем более отдельных клеток требует соблюдения полной асептики. Микроорганизмы, которые могут попасть в питательную среду, выделяют токсины, ингибирую-щие рост клеток и приводящие культуру к гибели. Поэтому при всех манипуляциях с клетками и тканями при культивировании in vitro соблюдают определенные правила асептики в ламинар-боксе или в асептических комнатах. В первом случае асептика достигается подачей профильтрованного стерильного воздуха, направленного из ламинкар-бокса наружу, на работающего. Асептические комнаты стерилизуют с помощью ультрафиолетовых ламп, а работают в таких помещениях в стерильной одежде. Рабочую поверхность столов в асептических комнатах и инструменты перед работой дополнительно стерилизуют спиртом.
Чистую посуду, предварительно завернутую в бумагу или в фольгу, инструменты, бумагу, вату стерилизуют сухим жаром в сушильном шкафу при температуре 160 °С в течение 1,5 — 2 ч. Питательные среды стерилизуют в автоклаве при температуре 120 °С и повышенном давлении в течение 15 — 20 мин. Если в состав питательных сред входят вещества, разрушающиеся при автоклавировании, их следует стерилизовать путем фильтрации через бактериальный фильтр. Затем стерильные профильтрованные компоненты добавляют в проавтоклавированную среду, охлажденную до температуры 40 °С.
Растительные ткани сами по себе могут служить серьезным источником заражения, так как на их поверхности всегда находится эпи-фитная микрофлора. Поэтому необходима поверхностная стерилизация, которую проводят следующим образом. Предварительно часть растения, из которой будет извлечен эксплант, промывают водой с мылом и споласкивают чистой водой. Затем растительный материал стерилизуют в растворах дезинфицирующих веществ. Некоторые из этих веществ, а также время стерилизации представлены в табл. 6.1.
После выдерживания эксплантов в дезинфицирующем растворе их несколько раз промывают в дистиллированной воде и скальпелем удаляют наружный слой клеток на срезах эксплантов, так как он может быть поврежден при стерилизации.
Микроорганизмы могут находиться и внутри растительной ткани. Наиболее часто внутреннее инфицирование встречается у тропических и субтропических растений. Поэтому кроме поверхностной стерилизации иногда приходится применять антибиотики, которые и убивают микробную флору внутри ткани. Следует, однако, заметить, что подобная обработка не всегда приводит к стерилизации внутренних тканей, так как трудно выбрать направленно действующий антибиотик.
Питательные среды. Изолированные клетки и ткани культивируют на многокомпонентных питательных средах. Они могут существенно различаться по своему составу, однако, в состав всех сред обязательно входят необходимые растениям макро- и микроэлементы, углеводы, витамины, фитогормоны и их синтетические аналоги. Углеводы (обычно это сахароза или глюкоза) входят в состав любой питательной смеси в концентрации 2 — 3%. Они необходимы в качестве питательного компонента, так как большинство каллусных тканей лишено хлорофилла и не способно к автотрофному питанию. Поэтому их выращивают в условиях рассеянного освещения или в темноте. Исключение составляет кал-лусная ткань мандрагоры, амаранта и некоторых других растений.
Обязательными компонентами питательных сред должны быть ауксины, вызывающие дедифференцировку клеток экспланта, и цитокинины, индуцирующие клеточные деления. При изменении соотношения между этими фитогормонами или при добавлении других фитогормонов могут быть вызваны разные типы морфогенеза.
Высокое содержание нитратов, ионов аммония, калия, фосфата способствует быстрому росту клеток. Истощение среды значительно снижает рост и процессы вторичного метаболизма. Однако изначально низкое содержание фосфатов в питательной среде способно стимулировать синтез вторичных метаболитов. Установлено, что культивирование каллусов солодки голой на среде с половинной концентрацией азота и фосфора в темноте увеличивает содержание фенольных соединений в 1,6 раза по сравнению с каллусами, растущими на полной среде. В среду могут быть добавлены эндоспермы незрелых зародышей (кокосовый орех, конский каштан и др.), пасока некоторых деревьев, различные экстракты (солодовый, дрожжевой, томатный сок). Введение их в среду дает интересные результаты, но такие эксперименты трудно воспроизводимы, так как действующий компонент, как правило, точно неизвестен. Например, добавление в питательную среду отдельных фракций кокосового молока не давало никаких результатов, в то время как нефракционированный эндосперм вызывал деление клеток.
При приготовлении твердых питательных сред для поверхностного выращивания каллусных тканей используют очищенный агар-агар — полисахарид, получаемый из морских водорослей. В качестве примеров в табл. 6.2 приведены составы наиболее распространенных питательных сред.
Среда Мурасиге и Скуга — самая универсальная. Она пригодна для образования каллусов, поддержания неорганизованного каллусного роста, индукции морфогенеза у большинства двудольных растений. Так, изменение соотношения ауксина и кинетина приводит к образованию либо корней (преобладание ауксина), либо стеблевых культур (преобладание кинетина).
Среда Гамборга и Эвелега хорошо подходит для культивирования клеток и тканей бобовых растений и злаков, среда Уайта обеспечивает укоренение побегов и нормальный рост стебля после регенерации, а среда Нича и Нич пригодна для индукции андрогенеза в культуре пыльников.
Физические факторы. На рост и развитие растительных тканей in vitro большое влияние оказывают физические факторы — свет, температура, аэрация, влажность.
Свет. Большинство каллусных тканей могут расти в условиях слабого освещения или в темноте, так как они не способны фото-синтезировать. Вместе с тем свет может выступать как фактор, обеспечивающий морфогенез и активирующий процессы вторичного синтеза.
В качестве источника света используют люминесцентные лампы. Для большинства травянистых растений оптимум освещенности составляет примерно 1000 люкс. Слишком низкая (300 люкс) или высокая (3000—10 000 люкс) освещенность подавляет рост. Освещение может влиять на метаболизм каллусных клеток. Так, в культурах чайного растения под действием света увеличивался биосинтез полифенолов. Напротив, в культуре клеток Scopolia parviflora свет подавлял образование алкалоидов. Кроме интенсивности освещенности на культуру ткани и ее физиологические особенности влияет качество света. Так, более 20 флавонов и флавоноловых гликозидов образуется в культурах клеток петрушки после освещения ее непрерывным люминесцентным светом «холодный белый». Вместе с тем синтез флавоновых гликозидов активируется при последовательном облучении ультрафиолетовым светом, а затем светом, лежащим в области «красный—длинноволновый красный».
Температура. Для большинства каллусных культур оптимальна температура 26 °С. В то же время каллусы и культуры клеток диоскореи дельтовидной хорошо растут даже при температуре 32 °С. В отличие от роста культур клеток и тканей индукция их морфогенеза требует более низких температур (18 — 20 °С). Влияние температуры на метаболизм клеток in vitro изучено слабо. Есть данные, что в каллусных культурах максимальное образование алкалоидов наблюдалось при температуре 25 °С, а при повышении температуры резко снижалось. В суспензионных культурах клеток Ipomoea содержание жирных кислот значительно увеличивалось, если их выращивали при субоптимальных температурах роста (15 °С). Поэтому при выращивании культуры in vitro необходимо тщательно изучать влияние всех абиотических факторов, в том числе температурного, на рост и метаболизм клеток.
Аэрация. Для выращивания суспензионных культур большое значение имеет аэрация. Особенно важно снабжение воздухом культивируемых клеток в больших объемах ферментеров.
При сравнении разных типов ферментеров было показано, что синтез вторичных метаболитов в суспензионной культуре был наибольшим при подаче воздуха снизу. При выращивании клеток в малых объемах (в колбах) нормальная аэрация достигается при постоянном перемешивании суспензии.
Влажность. Оптимальная влажность в помещении, где растут культуры, должна составлять 60 — 70%.
Таким образом, культивирование клеток и тканей зависит от многих факторов внешней среды, и действие их не всегда хорошо известно. Поэтому при введении в культуру нового вида растений необходимо прежде всего тщательно изучить влияние физических факторов на рост и физиологические характеристики этой культуры.