Что не является разделом биомеханики общая биомеханика частная биомеханика

Предмет, задачи, содержание науки биомеханики

Биомеханика наука о законах механического движения в живых системах.Она изучает движения с точки зрения законов механики, свойственных всем без исключения механическим движениям материальных тел. Специальных законов механики для живых систем не существует.

Однако сложность движения и функций, живого организма требует тщательного учета анатомо-физиологических особенностей. Иначе не возможно правильно применить законы механики в изучении сложных движений организмов. Нередко то, что выгодно с точки зрения законов механики, нецелесообразно с позиции функции живого организма.

Так, с точки зрения законов механики, для большей устойчивости тела выгодно придать его центру тяжести более низкое положение. Но горнолыжник не станет применять на неровном склоне низкую стойку, т.к. она затрудняет амортизирующую работу уже растянутых мышц. Таким образом, законы механики хотя и занимают главное место в биомеханике, но не могут использоваться без знания строения и функций организма.

1) оценка физических упражнений с точки зрения их эффективности в решении определенных задач физического вос­питания (ФВ);

2) изучение техники ФУ как предмета обучения с выявлением главного и ведущего в движениях, обеспечивающего высокий результат;

3) оценка качества выполнения ФУ, выявление ошибок, их причин, последствий и путей для устранения;

4) совершенствование спортивной техники с обобщением передового опыта и ее теоретическое обоснование;

5) изучение особенностей лучших образцов спортивной техники как общих для всех, так и тех, которые зависят от индивидуальных особенностей физического развития;

6) изучение функциональных показателей физического развития с целью повышения функциональных возможностей организма спортсмена.

Как учебный предмет биомеханика содержит главные положения учения о движениях, обобщенный и систематизированный опыт изучения общих объективных закономерностей. Овладение курсом биомеханики должно вооружить будущего педагога, тренера основами знаний о движениях человека, помочь им повысить теоретический уровень практической деятельности.

Предмет любой науки, в том числе и биомеханики, определяется специфическим объектом познания, т.е. то, что конкретно изучает наука.

Биомеханика возникла и развивается как наука о движениях животных организмов, в частности человека.

Следует отметить, что двигательные действия человека существенно отличаются от движений животных. В первую очередь речь идет об осознанной целенаправленности движений человека, о понимании их смысла, возможности контролировать их и планомерно совершенствовать. Поэтому сходство между движениями животных и человека завершается на чисто биологическом уровне.

Движения частей тела человека представляют собою перемещения в пространстве и времени, которые выполняются во многих суставах одновременно и последовательно. Движения в суставах по своей форме и характеру очень разнообразны, они зависят от действия множества приложенных сил. Все движения закономерно объединены в целостные организованные действия, которыми человек управляет при помощи мышц. Учитывая сложность движений человека, в биомеханике исследуют и механическую, и биологическую их стороны, причем обязательно в тесной взаимосвязи.

Поскольку человек выполняет всегда осмысленные действия, его интересует, как можно достичь цели, насколько хорошо и легко это получается в данных условиях. Для того чтобы результат движения был лучше, и достичь его было бы легче, человек сознательно учитывает и использует условия, в которых осуществляется движение. Кроме того, он учится более совершенно выполнять движения. Биомеханика человека учитывает эти его способности, чем существенно отличается от биомеханики животных. Таким образом, биомеханика человека изучает, какой способ и какие условия выполнения действий лучше и как овладеть ими.

Общая задача изучения движений состоит в оценке эффективности приложения сил для достижения поставленной цели.

Всякое изучение движений, в конечном счете, направлено на то, чтобы помочь лучше выполнять их. Прежде, чем приступить к разработке лучших способов действий, необходимо оценить уже существующие. Отсюда вытекает общая задача биомеханики, сводящаяся к оценке эффективности способов выполнения изучаемого движения. Биомеханика исследует, каким образом полученная механическая энергия движения и напряжения может приобрести рабочее применение. Рабочий эффект измеряется тем, как используется затраченная энергия. Для этого определяют, какие силы совершают полезную работу, каковы они по происхождению, когда и где приложены. То же самое должно быть известно о силах, которые производят вредную работу, снижающую эффективность полезных сил. Такое изучение дает возможность сделать выводы о том, как повысить эффективность действия. При решении общей задачи биомеханики возникают многочисленные частные задачи, не только предусматривающие непосредственную оценку эффективности, но и вытекающие из общей задачи и ей подчиненные.

Частные задачи биомеханикисостоят в изучении и объяснении: а) самих движений человека в той или иной области его двигательной деятельности; б) движений физических объектов, перемещаемых человеком, в) результатов решения двигательной задачи; г) условий, в которых они осуществляются; д) развития движений человека (с учетом названных сторон) в результате обучения и тренировки.

1. На основе кинематики описывают движения (пространственную форму и характер движений), изучая динамику движений, влияние сил на их изменение, дают объяснение, нахо­дят причины особенностей движения.

2. Таким же образом описывают и объясняют движения снарядов, зависящие от движений человека.

3. Сопоставляют разные варианты исполнения, сложившиеся в практике, разную степень совершенства, зависящую от квалификации исполнения и др.

4. Движения часто исполняются в переменных условиях, характер изменения последних также влияет на движения. Учитывая условия внешние (все факторы внешнего окружения) и внутренние (уровень подготовленности, возрастные особенности и др.), с одной стороны выявляют, какие условия благоприятствуют эффективности, иначе говоря, какие нужно создавать условия. С другой стороны, определяют, как лучше приспособиться к заданным условиям, как их использовать.

5. На основе описания и объяснения движений необходимо указать путь их совершенствования: не только изучать действительность, но и преобразовывать ее.

Современная теория биомеханики охватывает три большие проблемы.

Проблема изучения строения и свойства биомеханических систем, а также их развития. Особенности строения и свойства животных организмов оказывают существенное влияние на закономерности их движений. Исходя из этого, тело человека рассматривается как биомеханическая система. С давних пор органы опоры и движения сравнивают с рычагами. Ранее указывали лишь на то, что, изучая движения таких рычагов, надо учитывать анатомо-физиологические особенности тела человека.

Важным этапом в понимании природы движений стало признание специфики биомеханических систем, отличных в принципе от твердых тел или систем твердых тел. Эта специфика заставляет изучать такие свойства биомеханических систем, которых нет в искусственных конструкциях, машинах, создаваемых человеком.

Проблема изучения закономерностей формирования и совершенствования движений. Чрезвычайно важно изучение изменения движений в процессе овладения двигательными действиями как системами движений (двигательными актами, приемами выполнения действий).

Системный анализ и системный синтез неразрывно свя­заны друг с другом, они взаимно дополняются в системно-структурном исследовании.

— изучаются особенности техники выдающихся спортсменов;

— определяется рациональная организация действий;

— разрабатываются методические приемы освоения движений, методы технического самоконтроля и совершенствования техники.

Биомеханика делится на общую, дифференциальную и частную.

Общая биомеханика решает теоретические проблемы и помогает узнать, как и почему человек двигается. Этот раздел биомеханики очень важен для практики физического воспитания и спорта, ибо “нет ничего практичнее хорошей теории”.

Дифференциальная биомеханика изучает индивидуальные и групповые особенности двигательных возможностей и двигательной деятельности. Изучаются особенности, зависящие от возраста, пола, состояния здоровья, уровня физической подготовленности, спортивной квалификации и т.п.

Источник

Клиническая биомеханика тела

Понятие биомеханики тела; двигательная активность человека в норме и патологии. Виды способов транспортировки больных в лечебные отделения больницы на носилках вручную, перекладывание с носилок (каталки) на кровать, усаживание больного в кресло-каталку.

РубрикаМедицина
Видреферат
Языкрусский
Дата добавления24.03.2013
Размер файла739,4 K

Что не является разделом биомеханики общая биомеханика частная биомеханика

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Понятие биомеханики тела

2. Виды транспортировки больных в лечебные отделения

3. Выбор способа транспортировки

В практике врачей очень часто встречаются больные с весьма тяжелыми заболеваниями и травмами. При их перевозке мы должны знать, как правильно расположить пациента так, чтобы не навредить ему еще больше. Для этого нужно знать биомеханику тела человека и правильную схему положений пациента. При неправильной транспортировке врач может усугубить состояние пациента, что скажется на его дальнейшем выздоровлении.

Движения частей тела человека представляют собою перемещения в пространстве и времени, которые выполняются во многих суставах одновременно и последовательно. Движения в суставах по своей форме и характеру очень разнообразны, они зависят от действия множества приложенных сил. Все движения закономерно объединены в целостные организованные действия, которыми человек управляет при помощи мышц. Учитывая сложность движений человека, в биомеханике исследуют и механическую, и биологическую их стороны, причем обязательно в тесной взаимосвязи. Поскольку человек выполняет всегда осмысленные действия, его интересует, как можно достичь цели, насколько хорошо и легко это получается в данных условиях. Для того чтобы результат движения был лучше, и достичь его было бы легче, человек сознательно учитывает и использует условия, в которых осуществляется движение. Кроме того, он учится более совершенно выполнять движения. Биомеханика человека учитывает эти его способности, чем существенно отличается от биомеханики животных. Таким образом, биомеханика человека изучает, какой способ и какие условия выполнения действий лучше и как овладеть ими. Общая задача изучения движений состоит в оценке эффективности приложения сил для достижения поставленной цели. Всякое изучение движений, в конечном счете, направлено на то, чтобы помочь лучше выполнять их. Прежде, чем приступить к разработке лучших способов действий, необходимо оценить уже существующие. Отсюда вытекает общая задача биомеханики, сводящаяся к оценке эффективности способов выполнения изучаемого движения. Биомеханика исследует, каким образом полученная механическая энергия движения и напряжения может приобрести рабочее применение. Рабочий эффект измеряется тем, как используется затраченная энергия. Для этого определяют, какие силы совершают полезную работу, каковы они по происхождению, когда и где приложены. То же самое должно быть известно о силах, которые производят вредную работу, снижающую эффективность полезных сил. Такое изучение дает возможность сделать выводы о том, как повысить эффективность действия. При решении общей задачи биомеханики возникают многочисленные частные задачи, не только предусматривающие непосредственную оценку эффективности, но и вытекающие из общей задачи и ей подчиненные.

Так же правильное положение пациента позволяют стабилизировать или же держать состояние пациента до дальнейших действий. Транспортировка больного в отделение может осуществляться несколькими способами. Вид транспортировки описывает доктор. Нездоровых в удовлетворительном состоянии направляют в палату в сопровождении мед работника.

1. Понятие биомеханики тела

2. Раздел естественных наук, изучающий на основе моделей и методов механики механические свойства живых тканей, отдельных органов и систем, или организма в целом, а также происходящие в них механические явления.

Клиническая биомеханика

· Биомеханика нормальной и патологической ходьбы.

· Биомеханика скелетной травмы

· Биомеханика крупных суставов.

Основные методы исследования:

Особенно выражено вынужденное положение у больных с сердечной одышкой. Они стараются сесть. Опереться руками о край кровати, спустить ноги. В таких случаях под спину больного надо подложить 2-3 хорошо взбитые подушки, поставить подголовник или поднять головной конец функциональной кровати. Если больной прислоняется к стене, то под спину подкладывают подушку, а под ноги ставят скамеечку.

При наличии гнойника в легких необходимо создать положение для лучшего отхождения мокроты. Это так называемый бронхиальный дренаж (постуральный или дренаж положением). Больной может принимать положение стоя на коленях и лбом упираться в постель (поза молящегося магометанина (мусульманина) или же опускать голову ниже края кровати (поза ищущего обувь под кроватью). Если у больного односторонний процесс в легких, то его укладывают на противоположную сторону, т.е. на здоровый бок: при этом отхаркивание мокроты из больного легкого увеличивается.

С целью изменения положения тела больного в постели, как правило, необходимо два медицинских работника или сестер милосердия.

Запрещается в одиночку переворачивание больных, значительно превышающих медработника по весу, пациентов, имеющих дыхательные и подключичные катетеры, а также пациентов, о которых известно, что они находятся в тяжёлом, угрожающем жизни состоянии. Последствиями могут быть падение пациента с кровати, выпадение катетера, кровотечение, асфиксия, летальный исход.

2. Виды транспортировки больных в лечебные отделения больницы

биомеханика двигательный транспортировка больной

Средства передвижения (каталки, носилки) обеспечиваются простынями и одеялами. Последние необходимо менять после каждого употребления. Больные, которые передвигаются самостоятельно, из приёмного отделения поступают в палату в сопровождении младшего медицинского персонала (младшей медицинской сестры, санитарок или санитаров). Больных, которые не могут передвигаться, транспортируют в отделение на носилках или в кресле-каталке.

Транспортировка больного на носилках вручную

1. Поставить головной конец носилок (каталку) перпендикулярно к ножному концу кровати. Если площадь палаты небольшая, поставить носилки параллельно кровати.

4. При расположении носилок вплотную к кровати, удерживать носилки на уровне кровати, вдвоём (втроём) подтянуть больного краю носилок на простыне, слегка приподнять его вверх и переложить больного на кровать.

1. Поставить носилки перпендикулярно кровати, чтобы их головной конец подходил к ножному концу кровати.

3. Одновременно согласованными движениями поднять больного, вместе с ним повернуться на 90° в сторону носилок и уложить на них больного.

1. Наклонить кресло-каталку вперёд и наступить на подножку кресла

3. Вернуть кресло-каталку в правильное положение

4. Осуществить транспортировку

Способ транспортировки и укладывания на носилки больного зависит от характера и локализации заболевания. Особенности транспортировки больных

а) Кровоизлияние в мозг:

Лёжа на спине, бессознательное состояние:

Голову больного необходимо повернуть набок; следить, чтобы при возможной рвоте рвотные массы не попали в дыхательные пути

б) Сердечно-сосудистая недостаточность:

В положении полусидя, хорошо укрыть, положить к ногам и рукам грелки

в) Острая сосудистая недостаточность: Уложить больного так, чтобы голова была ниже уровня ног

Уложить по возможности на неповреждённую сторону, обожжённую поверхность закрыть стерильным бинтом или стерильной простынёй

д) Перелом костей черепа:

На носилках в положении лёжа на спине с опущенным подголовником носилок и без подушки; вокруг головы валик из одеяла, одежды или умеренно надутого воздухом подкладного круга.

В положении полусидя

з) Перелом костей таза:

Лёжа на спине, подложив под разведённые колени подушку, валик и т.п.

Если тяжелобольного нужно перемещать на значительные расстояния, то вид транспортировки должен выбрать врач. Выбор способа перемещения пациента. Это очень важно при его нынешнем состоянии. Так же надо учитывать внешние факторы с максимальной точностью, снабжая вид транспорта (носилки) всем необходимым оборудованием.

Вид транспортировки (определяемый врачом) и способ укладывания пациента на носилки зависит от заболевания и его локализации. Перемещать больного в кровати, на носилках, в кресле-каталке, а так же на руках одного или двух помощников (при отсутствии средств для транспортировки) необходимо с максимальной осторожностью и безопасностью.

Мало кто знает то, что в ряде всевозможных случаев целенаправленно доставить, как мы привыкли говорить, больного в отделение на носилках, установленных на специальной каталке. Все давно знают то, что любая каталка обязана быть заправлена простыней и одеялом зависимо от сезона. Необходимо подчеркнуть то, что белье меняют после каждого больного. Все знают то, что одеяла проветривают, а после инфекций, нездоровых направляют на дезинфекцию. Мало кто знает то, что в текущее время пускают носилки-каталки с тормозом. Мало кто знает то, что при отсутствии лифта тяжелобольных наконец-то поднимают на носилках два либо четыре человека, идущих в ногу; больного несут, головой вперед и приподнимают нижний ножной конец носилок. Надо сказать то, что при спуске, как все говорят, больного несут ногами вперед, также, как мы выражаемся, приподнимая ножной, нижний конец носилок.

В текущее время почти все поликлиники снабжены, как заведено, особым транспортом, который, вообщем-то, доставляет нездоровых в отдаленные от приемного отделения корпуса.

Тяжелобольных, находящихся в шоковом состоянии, без, подготовительной, санитарной обработки, минуя приемное отделение, направляют конкретно в отделение, где имеется палата интенсивного наблюдения. Очень хочется подчеркнуть то, что тяжелобольных, которым нельзя, двигаться, перекладывают с носилок на кровать с большой осторожностью, соблюдая, как многие думают, определенные правила: носилки ставят ножным концом, к головному концу кровати. Все знают то, что ежели площадь палаты не наконец-то дозволяет, носилки ставят параллельно кровати, а мед персонал становится меж носилками и кроватью лицом к нездоровому. Несомненно, стоит упомянуть то, что нужно заблаговременно обдумать, как поместить носилки относительно кровати, чтоб так сказать избежать неловких и излишних движений. Необходимо отметить то, что это зависит от размеров палаты и расположения коек.

В этой работе нам становится ясно, что любые наши действия могут навредить пациенту или же ему помочь. Самое главное уметь правильно скоординировать их.

1. Универсальный справочник медсестры. Практическое руководство по уходу за больными. Рипол Классик, 2006, 512 стр.

2. Справочник семейной медсестры. В 2 томах. Том 1: АСТ, Сталкер, 2005, 640 стр.

3. Палатная медицинская сестра. Учебное пособие: Феникс, 2001, 160 стр.

Размещено на Allbest.ru

Подобные документы

Двигательная деятельность человека. Пассивная физическая активность. Выбор способа транспортировки. Способы выноса больных и пострадавших. Перекладывание больного с кровати на носилки (каталку). Транспортировка пострадавших в машинах скорой помощи.

презентация [316,4 K], добавлен 03.10.2015

Влияние мышечной деятельности на функции внутренних органов, в частности, сердца и легких. Анализ научных трудов о биомеханике тела, характеристика ее основных элементов. Связь биомеханики с анатомией. Особенности клинической (медицинской) биомеханики.

презентация [2,6 M], добавлен 05.01.2015

Биомеханика человека как составная часть прикладных наук, изучающих движение человека, предмет и методы ее исследования, история становления и развития. Подготовка больных к транспортировке, необходимое оборудование для мониторинга, этапы ее реализации.

реферат [20,8 K], добавлен 11.04.2012

контрольная работа [933,0 K], добавлен 22.03.2009

Нормальная температура тела человека, определение ее постоянства балансом между теплопродукцией и теплоотдачей. Особенности лихорадочного состояния, причины его возникновения. Характеристика основных механизмов регулирования температуры тела человека.

презентация [713,4 K], добавлен 28.12.2013

Источник

Биомеханика

Содержание

Биомеханика человека — составная часть прикладных наук, изучающих движение человека

Движения частей тела человека представляют собою перемещения в пространстве и времени, которые выполняются во многих суставах одновременно и последовательно. Движения в суставах по своей форме и характеру очень разнообразны, они зависят от действия множества приложенных сил. Все движения закономерно объединены в целостные организованные действия, которыми человек управляет при помощи мышц. Учитывая сложность движений человека, в биомеханике исследуют и механическую, и биологическую их стороны, причем обязательно в тесной взаимосвязи.

Поскольку человек выполняет всегда осмысленные действия, его интересует, как можно достичь цели, насколько хорошо и легко это получается в данных условиях. Для того чтобы результат движения был лучше, и достичь его было бы легче, человек сознательно учитывает и использует условия, в которых осуществляется движение. Кроме того, он учится более совершенно выполнять движения. Биомеханика человека учитывает эти его способности, чем существенно отличается от биомеханики животных.

Таким образом, биомеханика человека изучает, какой способ и какие условия выполнения действий лучше и как овладеть ими. Общая задача изучения движений состоит в оценке эффективности приложения сил для достижения поставленной цели. Всякое изучение движений, в конечном счете, направлено на то, чтобы помочь лучше выполнять их. Прежде, чем приступить к разработке лучших способов действий, необходимо оценить уже существующие. Отсюда вытекает общая задача биомеханики, сводящаяся к оценке эффективности способов выполнения изучаемого движения. Биомеханика исследует, каким образом полученная механическая энергия движения и напряжения может приобрести рабочее применение. Рабочий эффект измеряется тем, как используется затраченная энергия. Для этого определяют, какие силы совершают полезную работу, каковы они по происхождению, когда и где приложены. То же самое должно быть известно о силах, которые производят вредную работу, снижающую эффективность полезных сил. Такое изучение дает возможность сделать выводы о том, как повысить эффективность действия. При решении общей задачи биомеханики возникают многочисленные частные задачи, не только предусматривающие непосредственную оценку эффективности, но и вытекающие из общей задачи и ей подчиненные.

Метод биомеханики — системный анализ и системный синтез движений на основе количественных характеристик, в частности кибернетическое моделирование движений. Биомеханика, как наука экспериментальная, эмпирическая, опирается на опытное изучение движений. При помощи приборов регистрируются количественные характеристики, например траектории скорости, ускорения и др., позволяющие различать движения, сравнивать их между собой. Рассматривая характеристики, мысленно расчленяют систему движений на составные части — устанавливают её состав. В этом — суть системного анализа.

Система движений как целое — не просто сумма её составляющих частей. Части системы объединены многочисленными взаимосвязями, придающими ей новые, не содержащиеся в её частях качества (системные свойства). Необходимо представлять это объединение, устанавливать способ взаимосвязи частей в системе — её структуру. В этом — суть системного синтеза. Системный анализ и системный синтез неразрывно связаны друг с другом, они взаимно дополняются в системно-структурном исследовании.

При изучении движений в процессе развития системного анализа и синтеза в последние годы все шире применяется метод кибернетического моделирования — построение управляемых моделей (электронных, математических, физических и др.) движений и моделей тела человека.

Клиническая биомеханика

Основные методы исследования:

Задачи и содержание спортивной биомеханики (биомеханика спорта)

Как самостоятельная научная дисциплина биомеханика физических упражнений обогащает теорию физического воспитания, исследуя одну из сторон физических упражнений— технику. Вместе с тем, биомеханика физических упражнений непосредственно используется в практике физического воспитания. Как учебный предмет биомеханика содержит главные положения учения о движениях, обобщенный и систематизированный опыт изучения общих объективных закономерностей. Объект познания биомеханики — двигательные действия [человек],а как системы взаимно связанных активных движений и положений его тела. Задачами спортивной биомеханики являются:

Биомеханика физических упражнений делится на общую, дифференциальную и частную.

Биомеханика занимает особое положение среди наук в физическом воспитании и спорте. Она базируется на анатомии, физиологии и фундаментальных научных дисциплинах — физике (механике), математике, теории управления. Взаимодействие биомеханики с биохимией, психологией и эстетикой дало жизнь новым научным направлениям, которые, едва родившись, уже приносят большую практическую пользу. В их числе «психобиомеханика», энергостатические и эстетические аспекты биомеханики.

Инженерная биомеханика

Составная часть медико-биологической науки Протезостроение

Спортивная биомеханика (Биомеханика спорта)

Биомеханика трудовых действий и рабочих поз

Составная часть науки эргономика (гигиена труда).

Теоретическая биомеханика

Теоретическая биомеханика — наука, основанная на применении математической методологии и математического аппарата.

Компьютерная биомеханика

Одним из ответвлений теоретической биомеханики является компьютерная биомеханика, компьютерное моделирование. Она интенсивно развивается, пополняя теоретическую биомеханику новыми знаниями.

Театральная биомеханика

Методы исследования в биомеханике

В настоящее время биомеханика обладает значительным арсеналом методов исследования локомоторной функции, как в статике, так и в динамике, причем изучается не только внешняя картина движения, но и механизмы управления, жизнеобеспечение организма, что дает возможность выявить целый комплекс параметров, характеризующих двигательный образ. В это понятие включаются не только внешние (механические) проявления движения и реакций окружающей среды, но и условия организации управления движениями, согласованная деятельность всех органов и систем организма. Получаемая в результате биомеханических исследований информация служит основой для определения нормы, позволяет количественно определить степень нарушения локомоторной функции при различных патологических состояниях. Биомеханические исследования достаточно широко используются не только в клинической медицине (функциональная диагностика, ортопедия, травматология, протезирование), но и в спорте, и при разработке различных антропоморфных механизмов (роботы, манипуляторы), и при решении других прикладных задач. Методическая база биомеханических исследований постоянно совершенствуется, используя новейшие достижения науки.

Методы исследования, получившие наибольшее распространение в настоящее время, в клинической биомеханике могут быть классифицированы следующим образом:

I. Соматометрические: антропометрия, фотограмметрия, рентгенография.

II. Кинезиологические: оптические, потенциометрия, электроподография, тензометрия, ихнография.

III. Клинико-физиологические: калориметрия, электромиография, электроэнцефалография и другие методы функциональной диагностики.

Соматометрия

Антропометрия

При клиническом и биомеханическом обследовании используются методы антропометрии с целью получения информации о половых и возрастных особенностях испытуемых об особенностях строения опорно-двигательного аппарата в норме и при патологии, важной информации об осанке. Обычно перед проведением специальных биомеханических исследований измеряют рост пациента стоя и сидя, длину конечностей, амплитуду движений в крупных суставах, определяют массу его тела. При помощи отвесов производят зарисовку диаграммы стояния — проекции на горизонтальную плоскость осей суставов нижних конечностей и таза. Это дает возможность составить представление об архитектонике нижних конечностей при удобном стоянии, определить величину разворота осей суставов в проекции на горизонтальную плоскость, угол разворота стоп, расстояние между внутренними поверхностями ног на различных уровнях и т. д.

Фотограмметрия

Что не является разделом биомеханики общая биомеханика частная биомеханика

Что не является разделом биомеханики общая биомеханика частная биомеханика

К антропометрическим методам сбора и анализа информации относится способ изучения схемы построения опорно-двигательного аппарата в виде так называемой фотограмметрии. Кратко техника фотограмметрии состоит в следующем: обследуемому предлагают принять естественную, наиболее привычную, удобную позу стояния. Перед ним устанавливают кадровую рамку с сантиметровыми делениями по горизонтальным и одной из вертикальных сторон. Через середину рамки натянута нить, служащая отвесом. Фотографируют и для графического анализа изготавливают фотоснимки, на которых измеряют расстояние в сантиметрах между передневерхними остями таза, наклон бедер по анатомическим осям относительно вертикали, расстояние между центрами коленных суставов, наклон голеней по анатомическим осям, угол физиологического вальгуса голеней, расстояние между центрами опоры стоп. Этот метод даст возможность определить возрастные особенности схемы построения опорно-двигательного аппарата в норме и при различных патологических состояниях.

Метод оптической компьютерной топографии

Что не является разделом биомеханики общая биомеханика частная биомеханика

Что не является разделом биомеханики общая биомеханика частная биомеханика

Кинезиологические методы

Целенаправленные движения человека (локомоции) представляют собой устойчивый паттерн движения, характеризующийся определенными кинематическими, динамическими, временными и пространственными параметрами. Вся совокупность последних может рассматриваться как биомеханическое проявление двигательного образа, который складывается для каждого конкретного человека в период постнатального онтогенетического развития и претерпевает изменения в результате изменений на любом уровне двигательного анализатора в зависимости от возраста и условий функционирова¬ния жизнеобеспечивающих систем организма. Естественно, что регистрация кинезиологических параметров движения является необходимой для его характеристики, и при нарушениях функции опорно-двигательного аппарата, и при изучении локомоции спортсмена.

Наиболее достоверные сведения о движении могут быть получены с помощью оптических методов, которые обеспечивают комплексную регистрацию любого количества точек тела человека и внешней обстановки относительно пространственно-временной координатной сетки и дают информацию о кинематике исследуемых точек в форме, удобной для математического анализа. Координаты же, как известно, есть тот материал, из анализа которого может быть почерпнуто максимальное количество сведений о протекании снятого движения. Циклография (от цикла… и …графия), метод изучения движений человека путём последовательного фотографирования (до сотен раз в секунду) меток или лампочек, укрепленных на движущихся частях тела. Впервые фотографирование фаз движения было предложено в 80-х гг. 19 в. французским учёным Э. Мареем. Н. А. Бернштейн в 20-х гг. 20 в. усовершенствовал и модифицировал Ц., например он предложил кимоциклографию — съёмку на передвигающуюся плёнку. На основе анализа циклограмм — циклограмметрии — для ряда движений были получены данные о траектории отдельных точек тела, о скоростях и ускорениях движущихся частей тела, что дало возможность вычислить величины сил, обусловливающих данное движение. Эти сведения легли в основу современных представлений о принципах управления движениями человека, использованы при изучении спортивных движений, двигательных нарушений и др. К Ц. близок метод киносъёмки движений с последующей обработкой кадров наподобие циклограмм.

Наиболее простым и часто применяемым на практике видом киносъемки является фотограмметрия. Эта съемка представляет собой регистрацию движений человека и объектов окружающей среды в плоскости, перпендикулярной оптической оси аппарата. При этом аппарат устанавливается так, чтобы в его поле зрения находилось все, что будет подвергнуто изучению и последующему анализу. Полученные с помощью оптических методов регистрации экспериментальные данные подвергаются математической обработке. В качестве датчиков («светящихся точек») для получения кинематических характеристик движений конечностей применяют метки или электрические лампочки, которые укрепляют на исследуемых суставах. Снаряжение испытуемого почти невесомо, поэтому оно не вносит никаких изменений в структуру двигательного образа.

Конвергентная стереофотограмметрическая съемка и зеркальная циклограмметрия тождественны. Действительно, зеркальная циклограмметрическая съемка под углом а (угол между главной оптической осью киноаппарата и плоскостью зеркала — угол съемки) есть не что иное, как съемка двумя аппаратами, оптические оси которых конвергируют под углом а. Вычисление пространственных координат производится по формулам математической зависимости между пространственными координатами помещения (в случае, если съемка производится в камеральных условиях) и координатами перспективных изображений. Кроме аналитических методов, в настоящее время нашли широкое распространение различные номографические приемы, основанные на известных положениях синтетической геометрии.

Номограмма, с помощью которой осуществляется обработка изоинформации, представляет собой функциональную сетку и служит для получения реальных (действительных) координат любой фиксированной точки на сегменте или суставе конечности.

Электромеханические методы

В настоящее время в биомеханических исследованиях широкое распространение получили, наряду с оптическими, и электрические методы регистрации. Это можно объяснить в первую очередь тем, что информация, представленная в виде электрических сигналов, является удобной для обработки радио- и электронными приборами. Кроме того, большинство процессов, протекающих в живых организмах, сопровождается различными электрическими явлениями, что облегчает получение информации в виде электрических сигналов.

Что не является разделом биомеханики общая биомеханика частная биомеханика

Что не является разделом биомеханики общая биомеханика частная биомеханика

При использовании электрических методов регистрации неэлектрических величин (каковыми являются кинематические и динамические составляющие движения) в практике биомеханических исследований применяют измерение и регистрацию кинематических составляющих движения осуществляются с помощью линейных потенциометрических датчиков 2 типов: с входной функцией в виде углового и линейного механического перемещения. Потенциометрические датчики преобразуют функцию механического перемещения в аналоговый электрический сигнал, который затем регистрируется в соответствующем масштабе.

Исследование динамических составляющих движения осуществляют с помощью тензоменрических методов. В качестве тензочувствительного элемента используют различные тензодатчики — датчики давления. Тензодатчики применяются для определения вертикальных составляющих реакции опоры при ходьбе (ихнография) или для регистрации стабилограмм.

Подография — регистрация времени опоры отдельных участков стопы при ходьбе с целью изучения функции переката исследуется при помощи специальных датчиков, вмонтированных в подошву обуви.

Что не является разделом биомеханики общая биомеханика частная биомеханика

Что не является разделом биомеханики общая биомеханика частная биомеханика

Клинико-физиологические методы

Информация о функциональной анатомии опорно-двигательного аппарата человека и биомеханических параметрах движения не может достаточно полно охарактеризовать весь комплекс процессов, происходящих в организме в условиях двигательной активности. С целью изучения механизма управления движениями, их энергообеспеченности в биомеханических исследованиях применяются некоторые физиологические методы. Из обширного арсенала методов современной физиологии избираются те средства функциональной оценки жизнеобеспечивающих систем организма, которые в сочетании со специальными биомеханическими методами дают возможность глубже изучить процесс формирования двигательного навыка и реакции организма па реализацию движения. В связи с этим наиболее широко в клинико-биомеханических исследованиях используются различные варианты кардиографии, электроэнцефалография, электромиография, косвенная калориметрия и другие методы функциональной диагностики.

Калориметрия

Энергия, высвобождаемая организмом в процессе жизнедеятельности, переходит непосредственно в работу механическую, электрическую, физико-химическую и т. д., при этом высвобождается некоторое количество тепла. Всё тепло, отдаваемое организмом, даёт сумму энергетических превращений за определенный промежуток времени.

Количество выделяемого тепла может быть определено непосредственно в специальной калориметрической камере, в которую помещают испытуемого. Впервые такая камера была построена в 1880—1886 гг. на кафедре общей патологии Военно-медицинской академии им. С. М. Кирова В. В. Пашутиным. Однако в настоящее время применяется более простой метод непрямой калориметрии, который состоит в исследовании лёгочного газообмена и последующем пересчёте количества потребляемого кислорода в единицы тепловой энергии. Теоретические обоснования метода непрямой калориметрии базируются на том, что вся энергия, высвобождающаяся в процессе жизнедеятельности человека, есть результат распада (окисления) жиров, белков и углеводов. Экспериментально установлено среднее количество тепла, освобождающегося при окислении 1 г каждого из указанных веществ. Установлен и тепловой эквивалент кислорода при окислении этих веществ.

Энергетические траты здорового человека складываются из: 1) основного обмена, 2) прироста обмена вследствие специфически-динамического действия принятой пищи, 3) прироста обмена в результате мышечной работы.

Основной обмен составляет наименьшую интенсивность обмена веществ, которая необходима для обеспечения жизнеспособности. Энергетически он выражается в величинах теплопродукции в состоянии покоя. Основной обмен определяется не ранее, чем через 12—18 ч после приема пищи, в условиях полного мышечного и психического покоя, при температуре окружающего воздуха 18—20 °C.

Наиболее распространенным в настоящее время методом непрямой калориметрии является метод Дугласа — Холдена. Суть его заключается в том, что испытуемый дышит атмосферным воздухом, причем выдыхаемый воздух собирается в мешок из прорезиненной ткани емкостью 100—150 л. Количество выдыхаемого воздуха за данное время измеряется газовыми часами, а качественный состав исследуется в газоанализаторе Холдена.

Электромиография

Для изучения деятельности мышц в процессе выполнения двигательного акта используется электромиография. Ещё в 1884 г. Н. Е. Введенским описан опыт телефонического прослушивания потенциалов действия мышц человека, а в 1907 г. немецкий физиолог Н. Piper впервые зарегистрировал их с помощью струнного гальванометра. Однако практическую значимость электромиографические исследования приобрели лишь с 30-х годов после создания специализированных усилителей биопотенциалов и концентрических игольчатых электродов, позволивших не только исследовать функцию двигательной единицы, но и расшифровать значение компонентов электромиограммы (ЭМГ), снятой накожными электродами.

Отведение электромиограммы в настоящее время осуществляется двумя способами: накожными и игольчатыми электродами, позволяющими избирательно регистрировать активность одной двигательной единицы. Применение накожного биполярного отведения с межэлектродным расстоянием 20—25 мм позволяет регистрировать суммарную активность многих двигательных единиц. Развитие электромиографии привело к появлению специальной области клинической электрофизиологии — клинической электромиографии, находящей широкое применение в нервной и хирургической клиниках, в ортопедии и протезировании, в клинической и спортивной биомеханике. В последние годы область применения метода электромиографии существенно расширилась за счёт использования биопотенциалов мышц в качестве показателя в системах адаптивного регулирования мышечного тонуса.

История

История биомеханики неразрывно связана с историей техники, физики, биологии и медицины, а также с историей физической культуры и спорта. Многие достижения этих наук определяли развитие учения о движении живых существ.

Современную биомеханику нельзя представить без законов механики, открытых Архимедом, Галилеем, Ньютоном, без физиологии Павлова, Сеченова, Анохина, так как и без современных компьютерных технологий.

Истоки биомеханики

В своих естественнонаучных трудах «Части движения и перемещение животных», Аристотель заложил основу того, что в дальнейшем, спустя 2300 лет назовут наукой биомеханикой. В своих научных трактатах он свойственной ему мышлением описывает животный мир и закономерности движения животных и человека. Он писал о частях тела, необходимых для перемещения в пространстве (локомоции), о произвольных и непроизвольных движениях, о мотивации движений животных и человека, о сопротивлении окружающей среды, о цикличности ходьбы и бега, о способности живых существ приводить себя в движение…

Величайшим ученым-медиком античного времени (после Гиппократа) был Клавдий Гален (131—201 гг. н. э.). В соответствии с мировоззрением античного времени, Гален понимал целостность организма. Он писал:

«В общей совокупности частей, все находится во взаимном согласии и … все содействует деятельности каждой из них».

Изучение нервов позволило Галену сделать вывод о том, что нервы по своей функциональной особенности делятся на три группы: те, что идут к органам чувств, выполняют функцию восприятия, идущие к мышцам ведают движением, а идущие к органам охраняют их от повреждения. Основной его труд — О назначении частей человеческого тела. Гален экспериментально показал, что конечность попеременно то сгибается внутренними, то разгибается наружными мышцами. Так, описывая пятую мышцу, самую большую, по его мнению, из всех мышц тела, приводящую бедро и состоящую из большой, средней и малой мышц, прикрепляющихся к внутренним и задним частям бедренной кости и нисходящей вниз почти до коленного сочленения, он, анализируя её функцию, писал:

«Задние волокна этой мышцы, идущие от седалищной кости, укрепляют ногу, напрягая сустав. Не менее сильно это действие производится нижней порцией волокон, идущих от лобковой кости, к чему присоединяется еще легкое вращательное движение внутрь. Выше их лежащие волокна приводят бедро внутрь точно так же, как самые верхние приводят и в то же время несколько поднимают бедро»

«Наука механика потому столь благородна и полезна более всех прочих наук, что все живые тела, имеющие способность к движению, действуют по ее законам».

Его успех как великого художника также немало зависит от биомеханической направленности его картин, — в них детально прорисована техника движения. Его наблюдения, очевидные в наши дни, в средние века были революционными. Например,

«Мускулы начинаются и оканчиваются всегда в соприкасающихся костях, и никогда они не начинаются и не оканчиваются на одной и той же кости, так как они ничего не могли бы двигать, разве только самих себя»

Возникновение биомеханики как науки

Что не является разделом биомеханики общая биомеханика частная биомеханика

Что не является разделом биомеханики общая биомеханика частная биомеханика

Основателем науки биомеханики по праву считается Джованни Борелли, итальянский натуралист. Профессор университетов в Мессине (1649) и Пизе (1656). Помимо работ в области физики, астрономии и физиологии, он разрабатывал вопросы анатомии и физиологии с позиций математики и механики. Он показал, что движение конечностей и частей тела у человека и животных при поднятии тяжестей, ходьбе, беге, плавании можно объяснить принципами механики, впервые истолковал движение сердца как мышечное сокращение, изучая механику движения грудной клетки, установил пассивность расширения лёгких.

Наиболее известный труд ученого «Движение животных» («Dе Motu Animalium»). Его учение основано на твердых биомеханических принципах, в своей работе он описал принципы мускульного сокращения и впервые представил математические схемы движения. Он впервые использует биомеханическую модель для объяснения движения в биомеханической системе.

Новым толчком развития биомеханики был связан с изобретение метода кинофотосъемки движения человека. Французский физиолог, изобретатель и фотограф. Этьенн Марей(1830—1904) впервые применил кинофотосъемку для изучения движений человека. Так же впервые им был применен метод нанесения маркеров на тело человека — прототип будущей циклографии. Важной вехой в истории биомеханики явились исполненные Э. Майбриджем (1830—1904)(США) циклы фотографий, снятых несколькими камерами с разных точек зрения. Серия фотографий («Галопирующая лошадь», 1887), показала необычайную красоту пластики реальных движений. С тех пор кинофотосъемка применяется для анализа движений как один из основных методов биомеханики. Начало анализа движения человека было положено братьями Вебер (1836) в Германии. Первый трехмерный математический анализ человеческой походки проведен Вильгельмом Брауном и его студентом Отто Фишером в 1891 году. Методология анализа ходьбы не изменилась по сегодняшний день. Кроме того, Браун и Фишер впервые изучили массу, объём и центр масс человеческого тела, (проведя исследования на трупах), и получили данные, которые длительно использовали как биомеханический стандарт. Ими был также предложен метод определения массы сегментов тела и его объёма, используя погружение частей тела в воду. Так были получены данные возрастных изменений центров масс. Исследования Брауна и Фишера положили начало новой эпохи биомеханики — биомеханики ходьбы, а период со второй половины XIX столетия стали называть столетием ходьбы.

Современный этап развития биомеханики

Создателем теоретической основы современной биомеханики — учения о двигательной деятельности человека и животных можно по праву считать Николая Александровича Бернштейна (1896—1966) [10]

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *