Что не относится к звеньям биогеоценоза
Биогеоценоз
Биогеоценоз (от греч. βίος — жизнь γη — земля + κοινός — общий) — система, включающая сообщество живых организмов и тесно связанную с ним совокупность абиотических факторов среды в пределах одной территории, связанные между собой круговоротом веществ и потоком энергии (природная экосистема). Представляет собой устойчивую саморегулирующуюся экологическую систему, в которой органические компоненты (животные, растения) неразрывно связаны с неорганическими (вода, почва). Примеры: сосновый лес, горная долина. Учение о биогеоценозе разработано Владимиром Сукачёвым в 1940 году. В зарубежной литературе — малоупотребимо. Ранее также широко употреблялось в немецкой научной литературе.
Содержание
Биогеоценоз и экосистема
Близким по значению понятием является экосистема — система, состоящая из взаимосвязанных между собой сообществ организмов разных видов и среды их обитания. Экосистема — более широкое понятие, относящееся к любой подобной системе. Биогеоценоз, в свою очередь — класс экосистем, экосистема, занимающая определенный участок суши и включающая основные компоненты среды — почву, подпочву, растительный покров, приземный слой атмосферы. Не являются биогеоценозами большинство искусственных экосистем. Таким образом, каждый биогеоценоз — это экосистема, но не каждая экосистема — биогеоценоз. Для характеристики биогеоценоза используются два близких понятия: биотоп и экотоп(факторы неживой природы:климат, почва). Биотоп — это совокупность абиотических факторов в пределах территории, которую занимает биогеоценоз организмы из других биогеоценозов. По содержанию экологический термин «биогеоценоз» идентичен физико-географическому термину фация.
Свойства биогеоценоза
Основные показатели биогеоценоза
В большинстве случаев видовой состав и видовое разнообразие количественно не совпадают и видовое разнообразие напрямую зависит от исследуемого участка.
Пространственные характеристики
Механизмы устойчивости биогеоценозов
Одним из свойств биогеоценозов является способность к саморегуляции, то есть к поддержанию своего состава на определенном стабильном уровне. Это достигается благодаря устойчивому круговороту веществ и энергии. Устойчивость же самого круговорота обеспечивается несколькими механизмами:
Таким образом, механизмы обеспечивают существование неменяющихся биогеоценозов, которые называются стабильными. Стабильный биогеоценоз, существующий длительное время, называется климаксическим. Стабильных биогеоценозов в природе мало, чаще встречаются устойчивые — меняющиеся биогеоценозы, но способные, благодаря саморегуляции, приходить в первоначальное, исходное положение.
Формы существующих взаимоотношений между организмами в биогеоценозах
Совместная жизнь организмов в биогеоценозах протекает в виде 6 основных типов взаимоотношений:
Что такое Биогеоценоз? – Определение, характеристика, типы и примеры
Автором учения о биогеоценозах был советский ученый В. Н. Сукачев. Под этим термином он подразумевал совокупность живых организмов и факторов неживой природы, которые расположены на определенной территории. Любой биогеоценоз связан с конкретным участком суши, то есть зависит от растительного сообщества.
Отличие биогеоценоза от агроценоза, биоценоза и экосистемы
Под агроценозом подразумевают искусственную экосистему, которая была создана людьми. Она, в отличие от биогеоценоза, не имеет устойчивых связей. Каждое естественное природное сообщество формировалось на протяжении столетий. На его развитие оказывал влияние естественный отбор. Поля и плантации, созданные человеком, подчиняются искусственному отбору. С помощью людей агроценозы получают дополнительную энергию, в то время как биогеоценозы существуют за счет солнечной энергией.
Биоценозом называют совокупность живых организмов, которые населяют определенное пространство. Это может быть не только участок суши, но и водоем. Понятие биогеоценоза гораздо шире, оно включает в себя биоценоз и факторы окружающей среды.
Термин “экосистема” придумал английский ботаник А. Тенсли. Он гораздо шире, чем биогеоценоз и агроценоз. Оба понятия тождественны, если речь идет о лесах, лугах или полях. Природные сообщества, в которых невозможно выделить фитоценоз, попадают под определение экосистемы. Каждый биогеоценоз является экосистемой, но не каждая экосистема соответствует биогеоценозу.
Свойства биогеоценоза
Основными свойствами биогеоценоза являются:
Показатели биогеоценоза
Существует три показателя биогеоценоза. Под видовым разнообразием понимают совокупность всех групп организмов. Если какое-то звено в цепи питания будет нарушено, то пострадает вся система. Плотность популяции напрямую зависит от обеспеченности питанием. На продуктивность биогеоценоза влияет биомасса, живое вещество во всех растительных и животных группах.
Структура биогеоценоза
Видовой состав систем всегда различен. На него влияет поступление и распределение света, состав почвы и климатические условия. Ученые рассматривают несколько структур:
Поскольку биогеоценозы складываются много сотен лет подряд, ученые периодически вводят новые компоненты в их структуру.
Виды и примеры биогеоценоза
Система представляет собой совокупность растений, животных, микроорганизмов и грибов. Основными компонентами является углерод, кислород, солнечный свет и живые организмы. Солнце обеспечивает необходимый приток энергии, в результате чего происходит круговорот энергии. Она передается от простейших организмов к гетеротрофам.
Примерами биогеоценоза могут послужить лес, пруд, луг, степь или пустыня.
Смена биогеоценозов
Численность видов в условиях одной системы постоянно меняется. Из-за различных факторов на смену одних биогеоценозов приходят другие. Скорость таких изменений может быть разной. Лесные пожары, вырубки изменят экосистему в пределах одного поколения людей. На то, чтобы вместо дюн были образованы леса, уйдут тысячелетия.
Главная роль в развитии биогеоценоза отведена растениям. Процесс саморазвития сообществ называется сукцессией. Самым простым примером смены биогеоценоза может послужить зарастание водоема. Сначала он покрывается тиной, а затем заболачивается. Видовой состав организмов будет существенно отличаться от обитателей водоема.
Устойчивость биогеоценоза
Устойчивостью называют способность непрерывно поддерживать структуру. Больше всего на нее оказывает влияние богатство видового состава. Именно от него зависит круговорот веществ и энергии. Бедные сообщества неустойчивы. К неблагоприятным воздействиям готовы сложные биогеоценозы, характеризующиеся многоярусностью и разнообразными пищевыми отношениями.
Формы взаимоотношений между организмами в биогеоценозах
Все элементы системы тесно связаны друг с другом. Взаимосвязь может быть положительной, отрицательной и нейтральной. Отношения, которые приносят пользу одному или обоим организмам, называют симбиозом. Они возникают среди животных, птиц, растений, грибов. Ярким примером симбиоза являются пчелы и цветы.
Если один вид поедает другой, то речь идет о хищничестве. Для большинства животных характерно охотничье поведение. Паразитизм предполагает, что одни виды будут жить за счет ресурсов других. Хозяин не только источник пищи, но и постоянное место обитания паразита. При аменсализме один вид угнетает или убивает другой, при этом не получая для себя никаких благ.
Комменсализм подразумевает, что только один из видов получит пользу. При нейтрализме два вида, проживающие в одном биогеоценозе, никак друг от друга не зависят. Как правило, животные не контактируют. Конкуренция предполагает, что два вида будут соперничать друг с другом за одни и те же ресурсы.
Понятие экосистемы и биогеоценоза: структура и свойства биогеоценозов
Что такое биогеоценоз и как он связан с экосистемой?
Для начала разберемся, что такое экосистема.
Понятие экосистемы
Во входящих в состав биоценозов популяциях живых организмов наблюдается связь не только друг с другом, но также с условиями среды, в которой они существуют. Все потому, что окружающая среда поставляет вещества, которые обеспечивают жизнедеятельность живых организмов. Взамен она получает продукты метаболизма. Все это формирует определенную систему, в которую входят сообщество организмов и среда их существования. По этой причине экосистема — это важный элемент жизни в целом.
Ученые назвали такую систему экосистемой. Термин экосистема ввел в использование в 1935 году английский ученый-эколог А. Тенсли. Он считал, что живые организмы нельзя изучать без учета особенностей среды их обитания. Перейдем к определению экосистемы.
Экосистема — это совокупность живых организмов различных видов, взаимодействующих друг с другом и со средой, в которой они обитают.
В результате такого взаимодействия образуется определенная трофическая структура и обеспечивается круговорот веществ внутри самой системы.
Круговорот веществ — процесс обмена веществом между частями экосистемы: живой и неживой.
Понятие биогеоценоза
Биогеоценоз как понятие в 1940 году ввел в науку российский советский ученый-эколог В. Н. Сукачев. Он считал, что биогеоценоз и экосистема — понятия близкие, но не тождественные.
Для начала определимся, что такое биоценоз и биогеоценоз.
Биоценоз — это все объекты живой природы, которые находятся на определенной территории и взаимодействуют друг с другом в условиях общей среды обитания.
Биогеоценоз — это территория, которая отличается достаточно однородными условиями существования: ее населяют взаимосвязанные популяции различных видов, объединенные друг с другом и с физической средой обитания при помощи круговорота веществ и потока энергии.
Биогеоценоз в примерах: лес, луг, степь, поле, пруд, пустыня и др.
Различия биогеоценоза и экосистемы
Чем отличается биогеоценоз от экосистемы?
По мнению Сукачева, биогеоценоз — это более конкретное территориальное образование (или понятие), в отличие от экосистемы.
Экосистема — это совокупность организмов разных видов, которые связаны между собой трофически и необязательно населяют территорию с однородными условиями. В свою очередь, говоря о биогеоценозе, мы говорим об ограниченной территории, которая характеризуется однородностью условий и определенным растительным сообществом — оно называется фитоценоз.
Схема биогеоценоза представлена на рисунке ниже
Структура биогеоценоза
Биогеоценоз — это совокупность и система взаимодействий неживой и живой природы.
По этой причине биогеоценоз в структуре имеет абиотическую и биотическую части.
Абиотическая часть включает следующие компоненты:
Биотическая часть включает разнообразные экологические группы популяций организмов, объединенных друг с другом трофическими и пространственными связями.
Какие компоненты входят в структуру биогеоценозов
Продуценты — основа биотической составляющей. Они синтезируют органические вещества из неорганических. Продуценты — кормовая база для консументов, за которыми скрываются гетеротрофные организмы: травоядные, хищники и паразиты.
Редуценты в структуре биогеоценозов занимают одно из важнейших мест. Они питаются останками других организмов и продуктами их жизнедеятельности, поэтому расщепляют органические вещества до неорганических. Именно редуценты завершают цикл круговорота веществ в природе.
Свойства биогеоценозов
Биогеоценозы являются системами, а любой системе присущи определенные свойства. К числу основных свойств биогеоценозов относят:
Регулирующие факторы в этом случае — внутривидовые и межвидовые связи: хищник — жертва, хозяин — паразит, растение — травоядное).
В процессе своей деятельности человек сознательно или несознательно меняет соотношение компонентов в биогеоценозах. Все это может привести к тому, что изменится не только биогеоценоз, но и вся биосфера.
Экосистема (биогеоценоз), ее компоненты
Содержание:
Содержание:
Экосистема (биогеоценоз), ее компоненты: продуценты, консументы, редуценты и их роль
Экосистема (или биогеоценоз) – это открытая, саморегулирующаяся и самовоспроизводящаяся биологическая система, состоящая из взаимодействующих между собой организмов живой природы (биоценоз) и окружающей их неживой среды (биотоп). Озеро, степь, лес, болото – типичные примеры природных экосистем.
ЭКОСИСТЕМА = БИОЦЕНОЗ + БИОТОП
Термин «экосистема» был предложен ботаником А. Тенсли в 1935 году. Он считал, что любая совокупность живых организмов, как органического компонента, и неживой природы, как неорганического компонента, формирует экосистему. Для А. Тенсли органика и неорганика в экосистеме равноценные части, которые нельзя исключать.
Классификация экосистем
По происхождению все экосистемы делят на природные (естественные), антропогенные (искусственные) и социоприродные (смешанные).
По источнику получаемой энергии экосистемы делятся на автотрофные и гетеротрофные.
В экосистеме выделяют два основных компонента:
Биотический компонент подразделяется на автотрофный и гетеротрофный:
— автотрофный – это организмы, называемые продуцентами, которые сами производят органическое вещество из простых неорганических веществ с использованием энергии солнечного света (фотоавтотрофы) или энергии, выделяющейся при химических реакциях (хемоавтотрофы). К группе автотрофных организмов принадлежат все зеленые растения и некоторые представители бактерий, способные фотосинтезировать. Простыми неорганическими веществами для фотоавтотрофов служат углекислый газ и вода. В процессе жизнедеятельности они образуют на свету органические вещества – углеводы или сахара. Кислород выделяется как побочный продукт:
Хемоавтотрофы используют энергию химических связей. Типичными представителями являются нитрифицирующие бактерии, способные окислять аммиак сначала до азотистой, а затем до азотной кислоты:
Выделившаяся при этих реакциях химическая энергия (Q) используется бактериями для образования органических веществ в процессе восстановления углекислого газа до углеводов.
— гетеротрофный – это организмы, получающие энергию из процессов окисления органического вещества. Сами они не могут производить органические соединения, поэтому получают их в готовом виде. К гетеротрофам принадлежат консументы и редуценты.
Консументы – это гетеротрофные организмы, потребляющие готовое органическое вещество, созданное продуцентами, и использующие его как источник энергии и питательного материала. Все животные, некоторые микроорганизмы и паразитические растения являются консументами. Консументы делятся на фаготрофов, питающихся животными и растительными организмами, и сапротрофов, питающихся мертвыми остатками.
Классификация консументов:
Редуценты, или деструкторы – это микроорганизмы (бактерии, грибы), которые разлагают все растительные и животные остатки до простых неорганических соединений.
К абиотическим факторам относятся влияния неживой природы: свет, температура, влажность.
Видовая и пространственная структуры экосистемы
При рассмотрении любых экосистем в горизонтальном и вертикальном направлении, можно отметить неоднородность расположения в них живых организмов.
Видовая структура экосистемы – это многообразие видов, их взаимодействие и соотношение численности. Различные сообщества, состоящие из разных видов, образуют видовое разнообразие экосистемы. Например, в степи на площади 100 м 2 произрастают растения, принадлежащие к 100 разным видам.
Видовая структура экосистемы определяется также и соотношением численности особей разных видов в экосистеме. Например, в одном лесу могут обитать около 10 видов птиц по 100 особей каждого вида. В другом лесу то же количество видов включает неоднородное соотношение особей каждого вида: особи одних видов по численности могут превосходить другие виды, и наоборот. Виды, в популяции которых содержится наибольшее количество особей, называются доминантами. Например, в степях доминантами являются ковыль и типчак, так как именно представители этих видов преобладают в экосистеме по численности. Доминанты определяют структуру экосистемы и, как правило, не имеют врагов, что дает им заметное преимущество к процветанию.
Эдификатор — основной образователь среды. Обычно доминирующий вид является и эдификатором. Например, сосна в сосновом бору считается как доминантом, так и эдификатором. Во-первых, по биомассе сосна значительно превосходит остальные организмы данной экосистемы, а во-вторых, она создает условия для существования “соседей”, затеняя нижние ярусы, окисляя почву.
Пространственная структура экосистемы – это расположение популяций разных видов в экосистеме. Пространственная структура экосистемы бывает вертикальной и горизонтальной. Растительность определяет главным образом вертикальную структуру экосистемы. Совокупность растений одинаковой высоты формирует ярусы. Выделяют около пяти ярусов, образованных разными жизненными формами растений: древесный (верхний и нижний), кустарниковый, кустарниково-травяной, мхово-лишайниковый. Высокие деревья (сосна, ель, дуб, береза) составляют верхний (первый) ярус. Далее располагаются деревья пониже (рябина, осина, черемуха, яблоня), образующие второй ярус. Затем идут кустарники (шиповник, жимолость, крушина, ежевика), формирующие третий ярус. Мхи, низкорослые травы и лишайники создают самый нижний ярус.
Ярусное расположение растительности определяется, прежде всего, их неодинаковой потребностью в солнечном свете: верхний ярус занимают светолюбивые растения, под пологом которых прячутся теневыносливые.
Животные также могут занимать тот или иной растительный ярус, практически не покидая его.
Ярусность бывает не только надземная, но и подземная. Почвенную ярусность определяет характер залегания корневой системы различных растений. Корни наиболее высоких деревьев проникают на большую глубину, чем корни кустарников, ближе к поверхности располагаются корни мелких травянистых растений, а непосредственно на ней — мхи. При этом, в поверхностных слоях почвы корней значительно больше, чем в глубинных.
Горизонтальная структура экосистемы (мозаичность) – это неравномерное распределение популяций отдельных видов по площади. Мозаичность возникает вследствие неоднородности рельефа почвы, а также может быть результатом деятельности человека (например, кострища, выборочная рубка). Животные тоже оказывают влияние на горизонтальную структуру экосистемы (вытаптывание копытными травостоя, образование муравейников).
Вертикальная и горизонтальная структуры экосистемы позволяют организмам наиболее эффективно использовать световой поток, минеральные вещества почвы и влагу.
Трофические уровни. Цепи и сети питания, их звенья
Трофический (пищевой) уровень — комплекс организмов с одинаковым типом питания, занимающих определенное положение в пищевой цепи.
Классификация трофических уровней:
Особи одного вида могут занимать несколько трофических уровней в зависимости от источников пищи (например, белый медведь, потребляя ягоды, считается консументом I порядка, но, поедая грызуна, становится консументом II порядка).
Заключенная в одних организмах энергия потребляется другими организмами в процессе круговорота веществ. Перенос энергии и пищи от ее источника — автотрофов (продуцентов) через ряд организмов происходит по пищевой цепи, путем поедания одних организмов другими. Пищевая цепь — это ряд видов или их групп, каждое предыдущее звено в котором служит пищей для следующего. Число звеньев в ней может быть различным, но обычно их бывает 3 — 5.
Пищевые цепи подразделяются на:
Пастбищные пищевые цепи – это цепи выедания. Основным источником пищи здесь являются зеленые растения (продуценты).
Детритные пищевые цепи – это цепи разложения, где в качестве главного источника пищи используются отмершие останки. Органические останки, или детрит, формируют начало детритных пищевых цепей.
Значение пищевой цепи:
Пищевые цепи не изолированы друг от друга. Они взаимодействуют между собой, формируя пищевые сети. Пищевая сеть – это условное образное обозначение трофических взаимоотношений продуцентов, консументов и редуцентов в сообществе. Оценивая схемы пищевых цепей, можно отметить, что каждый организм питается только каким-то определенным организмом. На самом деле, это не всегда так. Как правило, живые организмы могут использовать в качестве источника пищи организмы из разных популяций. Даже организмы из смежных пищевых цепей могут выступать для них компонентом питания. Таким образом, возможно переплетение пищевых цепей с образованием пищевых сетей.
Правила экологической пирамиды
На каждом последующем уровне продукция примерно в 10 раз меньше предыдущего. Это правило экологических пирамид в 1927 году объявил зоолог Чарлз Элтон для отображения экологической структуры. Структурой для построения экологических пирамид служат пищевые цепи. Чарлз Элтон разработал графическую модель в форме пирамиды, основание которой занимают продуценты. Объем каждого верхнего этажа по сравнению с предыдущим уменьшается. Над уровнем продуцентов залегает уровень консументов I порядка. Выше находятся консументы остальных порядков.
Позже эколог Р. Линдеман в 1942 году вывел правило 10%: на каждый следующий более высокий трофический уровень переходит около 10% энергии предыдущего уровня. 90% энергии при переносе ее от звена к звену рассеивается в виде тепла. Поэтому, в связи с колоссальной потерей энергии, количество трофических уровней ограничено и не превышает четырех-пяти звеньев. Чем дальше от начала располагаются звенья цепи, тем меньше энергии достается следующим трофическим уровням.
Энергия (C) тратится на разнообразные процессы жизнедеятельности организмов. Часть идет на построение клеток, а именно на прирост (P). Часть расходуется на прохождение энергетического обмена (R) и на процесс дыхания (i). Некоторая часть энергии выводится из организма в качестве неусвояемых продуктов жизнедеятельности (F). Следовательно, общее количество энергии будет складываться из отдельных составляющих:
Очевидно, что не все слагаемые будут переходить на следующий трофический уровень. Например, энергия, затраченная на дыхание, уходит из экосистемы. Таким образом, каждый последующий уровень всегда будет получать меньше энергии, чем первоначально содержится в предыдущем.
Правило 10% (принцип Линдемана) – основной закон пирамиды энергии.
Типы экологических пирамид:
Экологическая пирамида может быть перевернута основанием вверх, то есть предыдущие уровни могут иметь меньшую плотность и биомассу, чем последующие. Основным фактором для этого служит высокая скорость воспроизводства популяции жертвы. Например, множество насекомых, обитающих на одном дереве.
Составление схем передачи веществ и энергии (цепей питания)
Схемы цепей питания позволяют нам получить полную информацию о кормовой структуре биогеоценоза. В отличие от обычного бессвязного перечисления видов той или иной экосистемы, схемы передачи веществ и энергии дают возможность проследить взаимоотношения между видами разных популяций, построенных на принципе «пища-потребитель».
Поскольку вещество и энергия постоянно перемещаются, важно также знать направление этого потока.
Типичная трофическая цепь записывается линейно. В зависимости от типа пищевой цепи, определяют организм, расположенный в начале. Если целью служит запись пастбищной пищевой цепи, то сначала записывают продуцента (любое растение, способное к фотосинтезу). За продуцентом следуют консументы всех возможных порядков. Между организмами, записанными в строку, рисуют стрелки. Направление стрелок позволяет понять, в какую сторону движется энергия и вещество. Например, трава → кузнечик → мышь → куница → орел. Трава, являясь продуцентом, служит пищей для кузнечиков (консументы первого порядка), которые, в свою очередь, становятся пищей для мышей (консументы второго порядка). Мышами питаются куницы (консументы третьего порядка), а куниц поедают орлы (консументы четвертого порядка). Стрелки показывают направление движения веществ и энергии от травы к орлам.
В детритной пищевой цепи место продуцента занимает детрит — мертвое органическое вещество, которое потребляют консументы первого порядка. Например, мертвое животное → муха → лягушка → змея.
Как правило, при выполнении заданий, перечисляется только список видов, обитающих в экосистеме, а пищевые взаимоотношения между ними приходится определять самому. Сделать это просто. Сначала нужно проанализировать способ питания организмов. При наличии в списке продуцента, именно он выделяется в первую очередь. Обычно, продуцентами в пищевых цепях являются зеленые растения.
Далее выбирается гетеротрофный организм, питающийся растительной пищей, или фитофаг. Затем, хищное животное, поедающее фитофагов и т.д.
Если в предложенном списке организмов отсутствует продуцент, тогда выбирается детрит. В остальном система составления пищевых цепей одинакова.