Что называют значением числового выражения привести
Числовые и буквенные выражения
Числовые выражения
В этом разделе мы узнаем, что называют числовым выражением и значением выражения, научимся читать выражения.
Значение выражения — это результат выполненных действий.
Чтение числовых выражений
Решение числовых выражений
45 – (30 + 2) = …
Сначала выполняем действие, записанное в скобках. К 30 прибавляем 2.
30 + 2 = 32
Теперь нужно из 45 вычесть 38.
45 – 32 = 13
45 – (30 + 2) = 13
Сравнение значений числовых выражений
Сравнить числовое выражение – найти значение каждого из выражений и их сравнить.
Для этого найдем значения каждого из них:
Буквенные выражения
Буквенным называется математическое выражение, в котором используются цифры, знаки действий и буквы. Например, (47 + d) – 11.
Для записи буквенных выражений необходимо знать некоторые буквы латинского алфавита. Мы приводим его полностью, чтобы ты знал, с какими буквами можешь встретиться при составлении, решении или чтении буквенных выражений.
Чаще всего используются буквы:
a, b, c, d, x, y, k, m, n
Алгоритм решения буквенного выражения
1. Прочитать буквенное выражение
2. Записать буквенное выражение
3. Подставить значение неизвестного в выражении
4. Вычислить результат
Читаем выражение: Из 28 вычесть с или Найти разность числа 28 и с
Подставим вместо неизвестного «с» число 4.
У нас получается выражение: 28 – 4
Переменные
Буквы, которые содержатся в буквенных выражениях называются переменными. Например, в выражении с + x + 2 переменными являются буквы c и x. Если вместо этих переменных подставить любые числа, то буквенное выражение с + x + 2 обратится в числовое выражение, значение которого можно будет найти.
Числа, которые подставляют вместо переменных называют значениями переменных. Например, изменим значения переменных c и x. Для изменения значений используется знак равенства
Мы изменили значения переменных c и x. Переменной c присвоили значение 2, переменной x присвоили значение 3, тогда выражение с + х + 2 будет выглядеть так:
Теперь мы можем найти значение этого выражения:
с + х + 2 = 2 + 3 + 2 = 5 + 2 = 7
Поделись с друзьями в социальных сетях:
Значение числового, буквенного выражения и выражения с переменными
В процессе разбора тем о числовых, буквенных выражениях и выражениях с переменными следует обратить внимание на понятие значение выражения. Ниже дадим определение этому термину, рассмотрим примеры.
Что такое значение числового выражения
Мы знакомимся с числовыми выражениями с самого начала школьного обучения. Да и почти сразу начинает использоваться понятие «значение числового выражения». Так обозначают выражения, составляющие которого – числа, соединяемые знаками арифметических действий: плюс, минус, умножить, разделить.
Значение числового выражения – это конечное число, получаемое в результате выполнения заданных действий в исходном числовом выражении.
Зачастую в словосочетании «значение числового выражения» слово «числовое» не употребляют, поскольку в любом случае понятно, значение какого выражения рассматривается.
В основном интерес вызывает не само числовое выражение, а его значение. Практически всегда существует задача по нахождению значения заданного выражения, которая так и обозначается: «найти значение выражения». В соответствующей статье можно детально изучить сам процесс нахождения значения числовых выражения разного рода с примерами.
Значение буквенного выражения и выражения с переменными
Кроме числовых, интерес представляют и буквенные выражения – те выражения, составляющими которого являются, в том числе, одна или несколько букв. Буквы в буквенном выражении обозначают разные числа, и при замене букв на числа получается числовое выражение.
Значения букв – числа, которые заменяют эти буквы в буквенном выражении. Тогда значение буквенного выражения при заданных значениях букв – это значение полученного числового выражения.
Таким образом, речь идет не о значении буквенного выражения, как такового, а о его значении, когда заданы (определены) конкретные значения букв.
В программе алгебры буквы в буквенном выражении могут принимать разнообразные значения, тогда буквы называют переменными, а буквенные выражения – выражениями с переменными. Логично следует введение понятия значения выражений при выбранных значениях переменных.
Значение выражения с переменными при выбранных значениях переменных – это значение числового выражения, полученное при подстановке конкретных выбранных значений переменных в заданное выражение.
Возможен вариант, когда выбранные переменные –различны, а значение исходного выражения при этих переменных одинаково.
Значения переменных возможно задать из областей допустимых значений, которые им соответствуют, поскольку в ином случае, подставив значения, не принадлежащие области допустимых значений, можно получить числовое выражение, не имеющее смысла.
Значение числового, буквенного выражения и выражения с переменными.
При изучении темы числовые, буквенные выражения и выражения с переменными необходимо уделить внимание понятию значение выражения. В этой статье мы ответим на вопрос, что такое значение числового выражения, и что называют значением буквенного выражения и выражения с переменными при выбранных значениях переменных. Для разъяснения этих определений приведем примеры.
Навигация по странице.
Что называют значением числового выражения?
Знакомство с числовыми выражениями начинается чуть ли не с первых уроков математики в школе. Практически сразу вводится и понятие «значение числового выражения». Его относят к выражениям, составленным из чисел, соединенных знаками арифметических действий (+, −, ·, :). Дадим соответствующее определение.
Значение числового выражения – это число, которое получается после выполнения всех действий в исходном числовом выражении.
Часто в словосочетании «значение числового выражения» слово «числового» опускают, и говорят просто «значение выражения», так как все равно понятно, о значении какого выражения идет речь.
Часто на практике интерес представляет не столько числовое выражение, как его значение. То есть, встает задача, заключающаяся в определении значения данного выражения. При этом обычно говорят, что нужно найти значение выражения. В указанной статье подробно разобран процесс нахождения значения числовых выражений различного вида, и рассмотрена масса примеров с детальными описаниями решений.
Значение буквенного выражения и выражения с переменными
Помимо числовых выражений изучают буквенные выражения, то есть выражения, в записи которых вместе с числами присутствует одна или несколько букв. Буквы в буквенном выражении могут обозначать различные числа, и если буквы заменить этими числами, то буквенное выражение станет числовым.
Числа, которыми заменяют буквы в буквенном выражении, называют значениями этих букв, а значение полученного при этом числового выражения называют значением буквенного выражения при данных значениях букв.
Итак, для буквенных выражений говорят не просто о значении буквенного выражения, а о значении буквенного выражения при данных (заданных, указанных и т.п.) значениях букв.
В старших классах при изучении алгебры буквам в буквенных выражениях позволяют принимать различные значения, такие буквы называют переменными, а буквенные выражения – выражениями с переменными. Для этих выражений вводится понятие значения выражения с переменными при выбранных значениях переменных. Разберемся, что это такое.
Значением выражения с переменными при выбранных значениях переменных называется значение числового выражения, которое получается после подстановки выбранных значений переменных в исходное выражение.
Остается лишь добавить, что существуют выражения с переменными, значения которых не зависят от значений входящих в них переменных. Например, значение выражения с переменной x вида 2+x−x не зависит от значения этой переменной, оно равно 2 при любом выбранном значении переменной x из области ее допустимых значений, которая в данном случае является множеством всех действительных чисел.
Числовые и буквенные выражения
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Числовые выражения: что это
Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.
Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения.
Например:
Это простые числовые выражения.
Чтобы получить сложное числовое выражение, нужно к простому выражению присоединить знаком арифметического действия еще одно простое числовое выражение. Вот так:
Это сложные числовые выражения.
Знать, где простое выражение, а где сложное — нужно, но называть оба типа выражений следует просто «числовое выражение».
Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.
Вспомним, какие виды арифметических действий есть.
+ — знак сложения, найти сумму.
— — знак вычитания, найти разность.
* — знак умножения, найти произведение.
: — знак деления, найти частное.
11 — значение числового выражения.
6 * 8 = 48
48 — значение числового выражения.
При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:
Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)
Часто бывает нужно сравнить два числовых выражения.
Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их.
Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2
14 больше 4
14 > 4
6 + 8 > 2 * 2
Буквенные выражения
Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.
В буквенном выражение есть цифры, знаки арифметических действия и буквы.
Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.
Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.
У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:
Пример 1. Найдите значение выражения: 5 + x.
Пример 2. Найдите значение выражения: (4 + a) * (2 + x).
Выражения с переменными
Переменная — это значение буквы в буквенном выражении.
Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.
Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение.
5x — это произведение числа 5 и переменной x
4a — это произведение числа 4 и переменной a
Числа 4 и 5 называют коэффициентами.
Коэффициент показывает, во сколько раз будет увеличена переменная.
Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике.
Задание раз.
Задание два.
Составьте буквенное выражение:
Сумма разности b и 345 и суммы 180 и x.
Ответ: роллы “Калифорния” и “Филадельфия” вместе стоят 1 000 рублей.
Задание пять.
Составьте выражение для решения задачи и найдите его значение.
Маша посмотрела за день 150 видео в ТикТок, а Лена — на 13 видео больше. Сколько всего видео было просмотрено обеими девочками?
150 + (150 + 13)
Выполняем сначала действие в скобках: 150 + 13 = 163.
150 + 163 = 313.
Ответ: Маша и Лена посмотрели всего 313 видео.
Нахождение значения выражения: правила, примеры, решения
В данной статье рассмотрено, как находить значения математических выражений. Начнем с простых числовых выражений и далее будем рассматривать случаи по мере возрастания их сложности. В конце приведем выражение, содержащее буквенные обозначения, скобки, корни, специальные математические знаки, степени, функции и т.д. Всю теорию, по традиции, снабдим обильными и подробными примерами.
Как найти значение числового выражения?
Числовые выражения, помимо прочего, помогают описывать условие задачи математическим языком. Вообще математические выражения могут быть как очень простыми, состоящими из пары чисел и арифметических знаков, так и очень сложными, содержащими функции, степени, корни, скобки и т.д. В рамках задачи часто необходимо найти значение того или иного выражения. О том, как это делать, и пойдет речь ниже.
Простейшие случаи
Это случаи, когда выражение не содержит ничего, кроме чисел и арифметических действий. Для успешного нахождения значений таких выражений понадобятся знания порядка выполнения арифметических действий без скобок, а также умение выполнять действия с различными числами.
Пример 1. Значение числового выражения
Выполним сначала умножение и деление. Получаем:
Теперь проводим вычитание и получаем окончательный результат:
Сначала выполняем преобразование дробей, деление и умножение:
Теперь займемся сложением и вычитанием. Сгруппируем дроби и приведем их к общему знаменателю:
Искомое значение найдено.
Выражения со скобками
Если выражение содержит скобки, то они определяют порядок действий в этом выражении. Сначала выполняются действия в скобках, а потом уже все остальные. Покажем это на примере.
Пример 3. Значение числового выражения
Значение выражений, содержащих скобки в скобках, находится по такому же принципу.
Пример 4. Значение числового выражения
Выполнять действия будем начиная с самых внутренних скобок, переходя к внешним.
Выражения с корнями
Математические выражения, значения которых нам нужно найти, могут содержать знаки корня. Причем, само выражение может быть под знаком корня. Как быть в таком случае? Сначала нужно найти значение выражения под корнем, а затем извлечь корень из числа, полученного в результате. По возможности от корней в числовых выражениях нужно лучше избавляться, заменяя из на числовые значения.
Пример 5. Значение числового выражения
Сначала вычисляем подкоренные выражения.
Теперь можно вычислить значение всего выражения.
Часто найти значение выражения с корнями часто нужно сначала провести преобразование исходного выражения. Поясним это на еще одном примере.
Пример 6. Значение числового выражения
Как видим, у нас нет возможности заменить корень точным значением, что усложняет процесс счета. Однако, в данном случае можно применить формулу сокращенного умножения.
Выражения со степенями
Если в выражении имеются степени, их значения нужно вычислить прежде, чем приступать ко всем остальным действиям. Бывает так, что сам показатель или основание степени являются выражениями. В таком случае, сначала вычисляют значение этих выражений, а затем уже значение степени.
Пример 7. Значение числового выражения
Начинаем вычислять по порядку.
Осталось только провести операцию сложение и узнать значение выражения:
Также часто целесообразно бывает провести упрощение выражения с использованием свойств степени.
Пример 8. Значение числового выражения
Показатели степеней опять таковы, что их точные числовые значения получить не удастся. Упростим исходное выражение, чтобы найти его значение.
Выражения с дробями
Если выражение содержит дроби, то при вычислении такого выражения все дроби в нем нужно представить в виде обыкновенных дробей и вычислить их значения.
Если в числителе и знаменателе дроби присутствуют выражения, то сначала вычисляются значения этих выражений, и записывается финальное значение самой дроби. Арифметические действия выполняются в стандартном порядке. Рассмотрим решение примера.
Пример 9. Значение числового выражения
Как видим, в исходном выражении есть три дроби. Вычислим сначала их значения.
Перепишем наше выражение и вычислим его значение:
Часто при нахождении значений выражений удобно бывает проводить сокращение дробей. Существует негласное правило: любое выражение перед нахождением его значения лучше всего упростить по максимуму, сводя все вычисления к простейшим случаям.
Пример 10. Значение числового выражения
Мы не можем нацело извлечь корень из пяти, однако можем упростить исходное выражение путем преобразований.
Исходное выражение принимает вид:
Вычислим значение этого выражения:
Выражения с логарифмами
Если же вычислить точное значение логарифма невозможно, упрощение выражения помогает найти его значение.
Пример 11. Значение числового выражения
По свойству логарифмов:
Вновь применяя свойства логарифмов, для последней дроби в выражении получим:
Теперь можно переходить к вычислению значения исходного выражения.
Выражения с тригонометрическими функциями
Бывает, что в выражении есть тригонометрические функции синуса, косинуса, тангенса и котангенса, а также функции, обратные им. Из значения вычисляются перед выполнением всех остальных арифметических действий. В противном случае, выражение упрощается.
Пример 12. Значение числового выражения
Сначала вычисляем значения тригонометрических функций, входящих в выражение.
Подставляем значения в выражение и вычисляем его значение:
Значение выражения найдено.
Часто для того, чтобы найти значение выражения с тригонометрическими функциями, его предварительно нужно преобразовать. Поясним на примере.
Пример 13. Значение числового выражения
Для преобразования будем использовать тригонометрические формулы косинуса двойного угла и косинуса суммы.
Общий случай числового выражения
В общем случае тригонометрическое выражение может содержать все вышеописанные элементы: скобки, степени, корни, логарифмы, функции. Сформулируем общее правило нахождения значений таких выражений.
Как найти значение выражения
Пример 14. Значение числового выражения
Выражение довольно сложное и громоздкое. Мы не случайно выбрали именно такой пример, постаравшись уместить в него все описанные выше случаи. Как найти значение такого выражения?
Известно, что при вычислении значения сложного дробного вида, сначала отдельно находятся значения числителя и знаменателя дроби соответственно. Будем последовательно преобразовывать и упрощать данное выражение.
π 6 + 2 · 2 π 5 + 3 π 5 = π 6 + 2 · 2 π + 3 π 5 = π 6 + 2 · 5 π 5 = π 6 + 2 π
Теперь можно узнать значение синуса:
Вычисляем значение подкоренного выражения:
2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 = 2 · 1 2 + 3 = 4
Со знаменателем дроби все проще:
Теперь мы можем записать значение всей дроби:
С учетом этого, запишем все выражение:
В данном случае мы смогли вычислить точные значения корней, логарифмов, синусов и т.д. Если такой возможности нет, можно попробовать избавиться от них путем математических преобразований.
Вычисление значений выражений рациональными способами
Нахождение значений выражений с переменными
Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных.
Нахождение значений выражений с переменными
Чтобы найти значение буквенного выражения и выражения с переменными, нужно в исходное выражение подставить заданные значения букв и переменных, после чего вычислить значение полученного числового выражения.
Подставляем значения переменных в выражение и вычисляем:
Иногда можно так преобразовать выражение, чтобы получить его значение независимо от значений входящих в него букв и переменных. Для этого от букв и переменных в выражении нужно по возможности избавиться, используя тождественные преобразования, свойства арифметических действий и все возможные другие способы.
Еще один пример. Значение выражения x x равно единице для всех положительных иксов.