Что называют ярмом трансформатора
Как устроен и работает трансформатор, какие характеристики учитываются при эксплуатации
В энергетике, электронике и других отраслях прикладной электротехники большая роль отводится преобразованиям электромагнитной энергии из одного вида в другой. Этим вопросом занимаются многочисленные трансформаторные устройства, которые создаются под различные производственные задачи.
Одни из них, имеющие наиболее сложную конструкцию, выполняют трансформацию мощных потоков высоковольтной энергии, например. 500 или 750 киловольт в 330 и 110 кВ или в обратном направлении.
Другие работают в составе малогабаритных устройств бытовой техники, электронных приборов, системах автоматизации. Они также широко используются в различных блоках питания мобильных устройств.
Трансформаторы работают только в цепях переменного напряжения разной частоты и не предназначены для применения в схемах постоянного тока, в которых используются преобразователи других типов.
Трансформаторы делятся на две основные группы: однофазные, питающиеся от сети однофазного переменного тока, и трехфазные, питающиеся от сети трехфазного переменного тока.
Трансформаторы очень различны по своей конструкции. Основными элементами трансформатора являются: замкнутый стальной сердечник (магнитопровод), обмотки и детали, служащие для крепления магнитопровода и катушек с обмотками и установки трансформатора в выпрямительное устройство. Матнитопровод предназначен для создания замкнутого пути для магнитного потока.
Части магннтопровода, на которых размещены обмотки, называются стержнями, а части, на которых отсутствуют обмотки и которые служат для замыкания: магнитного потока в магнитопроводе — ярмом. Материалом для магнитопровода трансформатора служит листовая электротехническая сталь (трансформаторная сталь). Эта сталь бывает различных марок, толщины, горячей и холодной прокатки.
Общие принципы работы трансформаторов
Мы знаем, что электромагнитная энергия неразрывна. Но ее принято представлять двумя составляющими:
Так проще понимать происходящие явления, описывать процессы, делать расчеты, конструировать различные устройства и схемы. Целые разделы электротехники посвящены раздельным анализам работы электрических и магнитных цепей.
Электрический ток, как и магнитный поток, протекает только по замкнутой цепи, обладающей сопротивлением (электрическим или магнитным). Его создают внешние приложенные силы — источники напряжения соответствующих энергий.
Однако, при рассмотрении принципов работы трансформаторных устройств придётся одновременно исследовать оба этих фактора, учесть их комплексное воздействие на преобразование мощности.
Если мы на замкнутый железный сердечник намотаем не одну, а две катушки, то при подключении одной из них, которую мы при этом назовем первичной, к зажимам переменного тока, в другой, которую мы назовем вторичной, будет индуктироваться переменная э. д. с. того же числа периодов, какое имеет ток в первичной катушке. От вторичной катушки мы можем взять переменный ток, как от обычного источника переменного тока — генератора. Такой прибор называется трансформатором, так как с помощью его можно изменить величину напряжения переменного тока, прежде чем приложить его к данной цепи. В практике обе катушки первичная и вторичная, находятся на одной и той же стороне сердечника, одна вокруг другой.
Простейший трансформатор состоит из двух обмоток, выполненных намоткой витками изолированной проволоки, по которым протекает электрический ток и одной магистрали для магнитного потока. Ее принято называть сердечником или магнитопроводом.
К вводу одной обмотки приложено напряжение от источника электроэнергии U1, а с выводов второй оно, после преобразования в U2, подается на подключенную нагрузку R.
Под действием напряжения U1 в первой обмотке по замкнутой цепи протекает ток I1, величина которого зависит от полного сопротивления Z, состоящего из двух составляющих:
1. активного сопротивления проводов обмотки;
2. реактивной составляющей, обладающей индуктивным характером.
Величина индуктивного сопротивления оказывает большое влияние на работу трансформатора.
Протекающая по первичной обмотки электрическая энергия в виде тока I1 представляет собой часть электромагнитной, магнитное поле которой направлено перпендикулярно движению зарядов или расположению витков проволоки. В его плоскости размещен сердечник трансформатора — магнитопровод, по которому замыкается магнитный поток Ф.
Все это наглядно отражено на картинке и строго соблюдается при изготовлении. Сам магнитопровод тоже замкнут, хотя в отдельных целях, например, для снижения магнитного потока в нем могут делать зазоры, увеличивающие его магнитное сопротивление.
За счет протекания первичного тока по обмотке магнитная составляющая электромагнитного поля проникает в магнитопровод и циркулирует по нему, пересекая витки вторичной обмотки, которая замкнута на выходное сопротивление R.
Под действием магнитного потока во вторичной обмотке наводится электрический ток I2. На его величине сказывается значение приложенной напряженности магнитной составляющей и полной сопротивление цепи, включая подключенную нагрузку R.
При работе трансформатора внутри магнитопровода создается общий магнитный поток Ф и его составные части Ф1 и Ф2.
Как устроен и работает автотрансформатор
Среди трансформаторных устройств особой популярностью пользуются упрощенные конструкции, использующие в работе не две разные отдельно выполненные обмотки, а одну общую, разделенную на секции. Их называют автотрансформаторами.
Принцип работы такой схемы практически остался прежним: происходит преобразование входной электромагнитной энергии в выходную. По виткам обмотки W1 протекают первичные токи I1, а по W2 — вторичные I2. Магнитопровод обеспечивает путь движения для магнитного потока Ф.
У автотрансформатора имеется гальванически связь между входными и выходными цепями. Так как преобразованию подвергается не вся приложенная мощность источника, а только часть ее, то создается более высокий КПД, чем у обычного трансформатора.
Такие конструкции позволяют экономить на материалах: стали для магнитопровода, меди для обмоток. Они обладают меньшим весом и стоимостью. Поэтому их эффективно используют в системе энергетики от 110 кВ и выше.
Особых отличий в режимах работы трансформатора и автотрансформатора практически нет.
Рабочие режимы трансформатора
При эксплуатации любой трансформатор может находиться в одном из состояний:
Холостой ход трансформатора
Холостой ход — работа прибора, машины и т. п. без нагрузки, вхолостую. При холостом ходе приборы, машины не отдают мощности, но сами при этом обычно потребляют ту или иную мощность.
Например, трансформатор, работающий без нагрузки (с разомкнутой вторичной обмоткой), потребляет некоторый ток из сети (т. н. холостой ток трансформатора), и этот ток, текущий в первичной обмотке, связан с потреблением некоторой мощности из сети, которая идет на нагрев обмотки (а в случае наличия потерь в стали и на нагрев сердечника) трансформатора.
Режим вывода из работы
Для его создания достаточно снять питающее напряжение источника электроэнергии с первичной обмотки и этим исключить прохождение электрического тока по ней, что и делают всегда в обязательном порядке с подобными устройствами.
Однако на практике при работе со сложными трансформаторными конструкциями такая мера не обеспечивает полностью меры безопасности: на обмотках может оставаться напряжение и приносить вред оборудованию, подвергать опасности обслуживающий персонал за счет случайного воздействия разрядов тока.
Как это может произойти?
У малогабаритных трансформаторов, которые работают в качестве блока питания, как показано на верхней фотографии, постороннее напряжение никакого вреда не причинит. Ему там просто неоткуда взяться. А на энергетическом оборудовании его обязательно следует учитывать. Разберём две часто встречающиеся причины:
1. подключение постороннего источника электроэнергии;
2. действие наведенного напряжения.
Первый вариант
На сложных трансформаторах работает не одна, а несколько обмоток, которые используются в разных цепях. Со всех их необходимо отключать напряжение.
Кроме того, на подстанциях, эксплуатируемой в автоматическом режиме без постоянного оперативного персонала к шинам силовых трансформаторов подключают дополнительные трансформаторы, обеспечивающие собственные нужды подстанции электроэнергией 0,4 кВ. Они предназначены для питания защит, устройств автоматики, освещения, отопления и других целей.
Их так и называют — ТСН или трансформаторы собственных нужд. Если со входа силового трансформатора снято напряжение и его вторичные цепи разомкнуты, а на ТСН проводятся работы, то существует вероятность обратной трансформации, когда напряжение 220 вольт с низкой стороны проникнет на высокую по подключенным шинам питания. Поэтому их необходимо обязательно отключать.
Действие наведенного напряжения
Если около шин отключенного трансформатора проходит высоковольтная линия, находящаяся под напряжением, то токи, протекающие по ней, способны наводить напряжение на шинах. Необходимо применять меры для его снятия.
Номинальный режим работы
Это обычное состояние трансформатора во время его эксплуатации для которого он и создан. Токи в обмотках и приложенные к ним напряжения соответствуют расчетным значениям.
Трансформатор в режиме номинальной нагрузки потребляет и преобразует мощности, соответствующие проектным значениям в течение всего предусмотренного ему ресурса.
Режим холостого хода
Он создается в том случае, когда на трансформатор подано напряжение от источника питания, а на выводах выходной обмотки отключена нагрузка, то есть разомкнута цепь. Этим исключается протекание тока по вторичной обмотке.
Трансформатор в режиме холостого хода потребляет минимально возможную мощность, определяемую его конструкторскими особенностями.
Режим короткого замыкания
Так называют ситуацию, когда нагрузка, подключенная к трансформатору оказывается закороченной, наглухо зашунтированной цепочками с очень малыми электрическими сопротивлениями и на нее действует вся мощность питания источника напряжения.
В этом режиме протекание огромных токов КЗ ничем практически не ограничивается. Они обладают огромной тепловой энергией и способны сжечь провода или оборудование. Причем действуют до тех пор, пока схема питания через вторичную или первичную обмотку не выгорит, разорвавшись в наиболее слабом месте.
Это самый опасный режим, который способен возникнуть при работе трансформатора, причем, в любой, самый неожиданный момент времени. Его появление можно предвидеть, а развитие следует ограничивать. С этой целью используют защиты, которые отслеживают превышение допустимых токов на нагрузке и максимально быстро их отключают.
Режим перенапряжения
Обмотки трансформатора покрыты слоем изоляции, который создается для работы под определенным напряжением. При эксплуатации возможно его превышение по различным причинам, возникающим как внутри электрической системы, так и в результате воздействия атмосферных явлений.
В заводских условиях определяется величина допустимого превышения напряжения, которое может действовать на изоляцию до нескольких часов и кратковременных перенапряжений, создаваемых переходными процессами при коммутациях оборудования.
Для предотвращения их воздействия создают защиты от повышения напряжения, которые при возникновении аварийной ситуации отключают питание со схемы в автоматическом режиме или ограничивают импульсы разрядов.
Устройство трансформаторов
Магнитная система. В зависимости от конфигурации магнитной системы трансформаторы подразделяют на стержневые (рис. 2.2, а), броневые (рис. 2.2, б) и тороидальные (рис. 2.2, в).Стержнем называют часть магнитопровода, на которой размещают обмотки. Часть магнитопровода, на которой обмотки отсутствуют, называют ярмом. Трансформаторы большой и средней мощности обычно выполняют стержневыми. Они имеют лучшие условия охлаждения и меньшую массу, чем броневые.
Силовые трансформаторы большой мощности броневого типа отечественная промышленность не выпускает.
Но при значительных мощностях (более 80—100 MB•А на фазу) часто применяютбронестержневые трансформаторы, у которых крайние стержни имеют боковые ярма (рис. 2.3,а). Такая конструкция позволяет уменьшить поперечное сечение верхнего и нижнего ярм по сравнению со стержневыми трансформаторами, в результате чего уменьшается высота трансформатора и упрощается его транспортировка по железным дорогам. При дальнейшем повышении мощности для еще большего уменьшения высоты верхнего и нижнего ярм применяют трансформаторы многостержневой конструкции. В этом случае «расщепляют мощность» каждой фазы между двумя или тремя отдельными стержнями, т. е. обмотки каждой фазы располагают на нескольких стержнях, включенных в магнитном отношении параллельно (рис. 2.3,6).
Для уменьшения потерь от вихревых токов магнитопроводы трансформаторов (рис. 2.4) собирают из изолированных листов электротехнической стали толщиной 0,28—0,5 мм при частоте 50 Гц. Обычно применяют анизотропную холоднокатаную сталь с ребровой структурой (марки 3412-3416) и содержанием кремния 2,8 — 3,8%. Магнитные свойства этой стали резко улучшаются при совпадении направлений магнитного потока и прокатки: потери в стали на перемагничивание уменьшаются в два-три раза, а магнитная проницаемость и индукция насыщения возрастают. Однако использование холоднокатаной стали усложняет конструкцию и технологию изготовления магнитопроводов, так как при этом требуется исключить прохождение магнитного потока поперек направления прокатки или по крайней мере уменьшить длину участков, на которых это явление возникает.
При изготовлении магнитопроводов из холоднокатаной текстурованной стали листы в местах сочленения крайних стержней с ярмами скашивают примерно на 45° (рис. 2.5, в и г).
Рис. 2.5. Расположение листов в двух смежных слоях магнитопровода силового трехфазного трансформатора: а, в, е — 1, 3, 5-й и другие слои; б, г, д — 4, 2, 6-й и другие слои; 1 — листы крайних стержней; 2 —листы среднего стержня; 3, 4, 5 — листы верхнего и нижнего ярм. |
Скос листов позволяет уменьшить магнитное сопротивление магнитопровода и потери мощности в нем, так как при прямоугольной форме листов в местах поворота магнитного потока на 90° возникают добавочные потери из-за несовпадения направлений индукционных линий и прокатки стали. Сборка магнитопроводов из листов с косым стыком является весьма трудоемкой, так как в целях перекрытия стыков листов при шихтовке приходится смещать их по длине. Поэтому в силовых трансформаторах широко применяют комбинированный способ шихтовки, при котором стыки листов ярма со средним стержнем (рис. 2.5, д и е) делают прямыми, а с крайними стержнями — косыми, или первый слой листов выполняют с косыми стыками, а второй — с прямыми.
Стержни магнитопровода в силовых трансформаторах сравнительно небольшой мощности имеют прямоугольное или крестовидное сечение (рис. 2.6, а и б), а в более мощных — ступенчатое, по форме приближающееся к кругу (рис. 2.6, в) (их собирают из листов различной ширины). Такая форма обеспечивает получение требуемого поперечного сечения стержня при минимальном диаметре, что позволяет уменьшить длину витков обмоток, а следовательно, и расход обмоточных проводов.
При большом сечении стержней их собирают из отдельных стальных пакетов, между которыми располагают продольные каналы шириной 5 — 6 мм, а в некоторых конструкциях и поперечный канал (рис. 2.6, г) для циркуляции охлаждающей жидкости.
Стяжку листов стержней (опрессовку стержней) в силовых трансформаторах сравнительно небольшой мощности осуществляют с помощью деревянных или пластмассовых планок и стержней, устанавливаемых между стальным стержнем и жестким изоляционным цилиндром, на котором намотана обмотка НН (рис. 2.7, а).
В более мощных трансформаторах с магнитопроводами из холоднокатаной анизотропной стали стержни стягивают бандажами из стеклоленты или стальной ленты (рис. 2.7,6). Чтобы стальные бандажи не образовали короткозамкнутых витков, их разрезают и стягивают с помощью изоляционных пряжек. Для получения равномерного сжатия стальных листов перед наложением бандажей стержень опрессовывают на сборочном стенде. Опрессовка стержней обеспечивает необходимую жесткость конструкции магнитопровода и предотвращает повышенную вибрацию его листов, сопровождающуюся шумом.
В магнитопроводах из горячекатаной стали стержни стягивают стальными шпильками, изолированными относительно стержней трубками из изоляционного материала (рис. 2.7, в). Такой способ опрессовки при холоднокатаной стали недопустим, так как магнитные силовые линии огибают отверстия, пробитые в стальных листах для шпилек, и, следовательно, отклоняются от направления проката стали.
Ярма, соединяющие стержни, выполняют обычно прямоугольного, Т-образного или ступенчатого сечения на 2 — 5% больше сечения стержней. Это уменьшает индукцию в стали ярма и потери мощности в ней. Ярма стягивают с помощью деревянных или стальных опорных балок, бандажей из стеклоленты или стальной ленты (рис. 2.7, г) или посредством шпилек (рис. 2.7, д).
Магнитопровод вместе с опорными балками и другими прессующими деталями образует остов трансформатора. При работе силовых трансформаторов магнитопровод и другие стальные части находятся в сильном электрическом поле, вследствие чего они могут приобрести электрический заряд. Чтобы избежать этого, остов заземляют с помощью медных лент.
Трансформаторы малой мощности и микротрансформаторы часто выполняют броневыми, так как они имеют более низкую стоимость по сравнению со стержневыми трансформаторами из-за меньшего числа катушек и упрощения сборки и изготовления. Применяют также и маломощные трансформаторы стержневого типа с одной или двумя катушками. Преимущество тороидальных трансформаторов — отсутствие в магнитной системе воздушных зазоров, что значительно уменьшает магнитное сопротивление магнитопровода.
В трансформаторах малой мощности магнитопровод собирают из штампованных пластин П-, Ш- и О-образной формы (рис. 2.8, а, б, в). При использовании листов Ш- и П-образной формы магнитопровод может быть собран «впереплет» или «встык». Сборку пластин «встык» применяют при необходимости введения в магнитопровод воздушного зазора; в этом случае в месте стыка устанавливают изоляционные прокладки.
Рис. 2.8. Магнитопроводы трансформаторов малой мощности: а, д — броневой, б, г — стержневой, в, е — тороидальный, ж — трехфазный. |
Большое значение получили также магнитопроводы, навитые из узкой ленты электротехнической стали (обычно из анизотропной холоднокатаной стали) или из специальных железоникелевых сплавов типа пермаллой. Их можно использовать для стержневых, броневых, тороидальных и трехфазных трансформаторов. Основными преимуществами их перед шихтованными являются лучшее использование ферромагнитного материала благодаря ориентации магнитного потока в направлении прокатки стали или пермаллоя и более высокое сопротивление вихревым токам, что обусловливает уменьшение потерь мощности в магнитопроводе, особенно при повышенных, частотах. Ленточные магнитопроводы (рис.2.8,г,д,е,ж) бывают неразъемными и разъемными. Разъемные ленточные магнитопроводы выполняют из двух половин. Чтобы уменьшить магнитное сопротивление магнитопровода в местах стыка, торцовые поверхности обеих половин шлифуют, затем; вкладывают в катушку и склеивают по шлифованным поверхностям специальным клеем, изготовленным на основе эпоксидной смолы с ферромагнитным наполнителем. Монолитность конструкции ленточного магнитопровода обеспечивается путем применения клеющих лаков и эмалей.
Для трансформаторов, работающих при частоте 400 и 500 Гц, магнитопроводы выполняют из специальных сортов электротехнической стали с малыми удельными потерями при повышенной частоте, а также из железоникелевых сплавов типа пермаллой, которые имеют большие начальную и максимальную магнитные проницаемости и позволяют получить магнитные поля с большой индукцией при сравнительно слабой напряженности. Толщина листов составляет 0,2; 0,15; 0,1 и 0,08 мм. При частотах более 10—20 кГц магнитопроводы прессуют из порошковых материалов (магнитодиэлектриков и ферритов).
Обмотки. В современных трансформаторах первичную и вторичную обмотки стремятся расположить для лучшей магнитной связи как можно ближе одну к другой. При этом на каждом стержне магнитопровода размещают обе обмотки либо концентрически — одну поверх другой, либо в виде нескольких дисковых катушек, чередующихся по высоте стержня. В первом случае обмотки называют концентрическими, во втором —чередующимися. В силовых трансформаторах обычно применяют концентрические обмотки, причем ближе» к стержням располагают обмотку НН, требующую меньшей изоляции относительно остова трансформатора, а снаружи — обмотку ВН (рис. 2.9, а).