Что называют высотой треугольника кратко
Высота треугольника
Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника
Содержание
Свойства
(Для доказательства тождества следует воспользоваться формулами
В качестве точки E следует взять пересечение двух высот треугольника.)
Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:
Минимальная высота в треугольнике всегда проходит внутри этого треугольника.
Основные соотношения
где — площадь треугольника, — длина стороны треугольника, на которую опущена высота.
где — основание.
Теорема о высоте прямоугольного треугольника
Если высота длиной h, проведённая из вершины прямого угла, делит гипотенузу длиной c на отрезки m и n, соответствующие b и a, то верны следующие равенства:
Мнемоническое стихотворение
См. также
Ссылки
Полезное
Смотреть что такое «Высота треугольника» в других словарях:
ВЫСОТА — ВЫСОТА, высоты, мн. высоты, высот, жен. 1. только ед. Протяжение снизу вверх, вышина. Высота дома. Башня большой высоты. || (мн. только спец. научн.). Расстояние от земной поверхности, измеряемое по вертикальной линии снизу вверх. Аэроплан летал… … Толковый словарь Ушакова
Высота (геометрия) — У этого термина существуют и другие значения, см. Высота (значения). Высота в элементарной геометрии отрезок перпендикуляра, опущенного из вершины геометрической фигуры (например, треугольника, пирамиды, конуса) на её основание или на… … Википедия
высота — ы/; мн. высо/ты; ж. см. тж. высотка, высотный 1) Величина, протяжённость чего л. от нижней точки до верхней, снизу вверх. Высота/ дома, дерева, горы. Высота/ волны. Плотина высотой в сто пят … Словарь многих выражений
высота — ы; мн. высоты; ж. 1. Величина, протяжённость чего л. от нижней точки до верхней, снизу вверх. В. дома, дерева, горы. В. волны. Плотина высотой в сто пятьдесят метров. Измерить, определить высоту чего л. 2. Расстояние от какой л. поверхности до… … Энциклопедический словарь
высота исходного треугольника резьбы — (H) Расстояние между вершиной и основанием исходного треугольника резьбы в направлении, перпендикулярном к оси резьбы. [ГОСТ 11708 82 (СТ СЭВ 2631 80)] Тематики нормы взаимозаменяемости Обобщающие термины основные элементы и параметры резьбы EN… … Справочник технического переводчика
Высота (значения) — Высота размер или расстояние в вертикальном направлении. Другие значения: В астрономии: Высота светила угол между плоскостью математического горизонта и направлением на светило. В военном деле: Высота возвышенность рельефа. В… … Википедия
ВЫСОТА (в геометрии) — ВЫСОТА, в геометрии отрезок перпендикуляра, опущенного из вершины геометрической фигуры (напр., треугольника, пирамиды, конуса) на ее основание (или продолжение основания), а также длина этого отрезка. Высота призмы, цилиндра, шарового слоя, а… … Энциклопедический словарь
ВЫСОТА — в геометрии отрезок перпендикуляра, опущенного из вершины геометрической фигуры (напр., треугольника, пирамиды, конуса) на ее основание (или продолжение основания), а также длина этого отрезка. Высота призмы, цилиндра, шарового слоя, а также… … Большой Энциклопедический словарь
ВЫСОТА — ВЫСОТА, ы, мн. оты, от, отам, жен. 1. Величина, протяжённость чего н. от нижней точки до верхней. В. кирпичной кладки. В. прибоя. В. циклона. 2. Пространство, расстояние от земли вверх. Смотреть в высоту. Самолёт набирает высоту. Лететь на… … Толковый словарь Ожегова
Высота (геометрич.) — Высота в геометрии, отрезок перпендикуляра, опущенного из вершины геометрической фигуры (например, треугольника, пирамиды, конуса) на её основание или продолжение основания, а также длина этого отрезка. В. призмы, цилиндра, шарового слоя,… … Большая советская энциклопедия
Определение и свойства высоты треугольника
В данной публикации мы рассмотрим определение высоты треугольника, продемонстрируем, как она выглядит в зависимости от вида треугольника, а также перечислим ее основные свойства.
Определение высоты треугольника
Высота треугольника – это перпендикуляр, который опущен из вершины фигуры на противоположную сторону.
Основание высоты – точка на противоположной стороне треугольника, которую пересекает высота (или точка пересечения их продолжений).
Обычно высота обозначается буквой h (иногда как ha – это означает, что она проведена к стороне a).
Высота в разных видах треугольников
В зависимости от вида фигуры высота может:
Свойства высоты треугольника
Свойство 1
Все три высоты в треугольнике (или их продолжения) пересекаются в одной точке, которая называется ортоцентром (точка O на чертежах ниже).
Свойство 2
При пересечении двух высот в треугольнике, образуются следующие подобные треугольники:
Свойство 3
Точка пересечения высот в остроугольном треугольнике является центром окружности, вписанной в его ортотреугольник.
Ортотреугольник – треугольник, вершинами которого являются основания высот △ABC. В нашем случае – это △DEF.
Свойство 4
Точки, которые симметричны ортоцентру треугольника относительно его сторон, лежат на окружности, описанной вокруг этого треугольника.
Примечание: формулы для нахождения высоты треугольника подробно рассмотрены в нашей публикации – “Как найти высоту в треугольнике abc”.
Треугольник. Высота треугольника.
Высота треугольника – перпендикуляр, прочерченный из выбранной вершины треугольника на противолежащею его сторону. Для обозначения высоты треугольника используют букву h, к ней добавляется название той стороны, к которой она прочерчена: ha, hb, hc,
Сторону треугольника, к которой прочерчена высота, называют основанием треугольника.
Высота треугольника может быть прочерчена к любой из трех сторон треугольника. Случается высота треугольника пересекает не само основание треугольника, а его продолжение. Так, высоты AD и ЕМ пересекают продолжения оснований ВС и FK.
Характерные особенности высоты.
В прямоугольном треугольнике высота, прочерченная из вершины прямого угла, разделит его на два треугольника, подобные первоначальному.
В остроугольном треугольнике две его высоты отделяют от него подобные треугольники.
Если треугольник остроугольный, то все основания высот принадлежат его сторонам, а у тупоугольного треугольника две высоты принадлежат продолжению сторон.
Три высоты в остроугольном треугольнике перекрещиваются в одной точке и эту точку обозначают как ортоцентр треугольника.
Высоты треугольника / Треугольники / Справочник по геометрии 7-9 класс
Высота треугольника. Свойство высоты прямоугольного треугольника
Для высоты прямоугольного треугольника, проведённой из вершины прямого угла, справедливо следующее утверждение.
Высоты можно провести из каждой вершины треугольника, однако у треугольников различных типов высоты располагаются по-разному, как показано в следующей таблице.
Видео
Формулы равнобедренного треугольника
Формулы сторон равнобедренного треугольника
b — основание равнобедренного треугольника
a — равные стороны равнобедренного треугольника
α — углы при основании
β — угол, образованный равными сторонами
Формулы длины стороны (основания b) равнобедренного треугольника
Формулы длины равных сторон равнобедренного треугольника (стороны a):
Формулы высоты, медианы, биссектрисы равнобедренного треугольника
b — основание равнобедренного треугольника
a — равные стороны равнобедренного треугольника
α — углы при основании
β — угол, образованный равными сторонами
L — высота, биссектриса и медиана
Формулы высоты, биссектрисы и медианы равнобедренного треугольника, через сторону и угол (L)
Формула высоты, биссектрисы и медианы равнобедренного треугольника, через стороны (L)
В треугольнике проведено две высоты
Первый «неожиданный факт»:
Почему бы это? Да очень просто! У них общий угол \( \displaystyle B\) и оба – прямоугольные. Значит, подобны по двум углам.
Второй «неожиданный» факт:
Здесь тоже подобие по двум углам: \( \angle 1=\angle 2\) (как вертикальные) и по прямому углу.
Третий, по-настоящему неожиданный факт:
\( \Delta ABC\sim \Delta <
Вот это уже интереснее, правда? Давай разбираться, почему так.
Остроугольный треугольник и высота
Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:
Что видим теперь? Ещё подобные треугольники!
Как от двух линий вообще могут получиться столько подобных треугольников?!
Видишь, какое богатство? И всё это может быть использовано в задачах!
Ну вот, теперь ты узнал что-то новенькое про высоты треугольника.
Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее — которое с косинусом, и то, что угол между высотами равен углу между сторонами…
Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести.
И тогда, если ты будешь точно знать, например, что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!
Свойства высоты в равностороннем треугольнике
Равносторонний треугольник — это треугольник, стороны которого, углы, высоты, медианы, оси симметрии и биссектрисы будут равны.
Такой треугольник является частным примером равнобедренного треугольника, но не наоборот.
Высоту в таком треугольнике можно найти с помощью следующей формулы:
h=a32 где а — сторона равностороннего треугольника.
Главным свойством, которым обладает высота равностороннего треугольника, является тот факт, что она равна медиане и биссектрисе:
а — сторона правильного равностороннего треугольника.
Что мы узнали?
Мы узнали, что такое высота треугольника, какие бывают высоты и как они обозначаются. Разобрались в типовых задачах и записали три формулы для высоты треугольника.
В отличие от медианы или биссектрисы, высота треугольника может быть расположена как внутри треугольника, так и вне его.
Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противолежащую сторону.
На рисунке BF — высота, проведенная из вершины B к стороне AC.
Все три высоты треугольника пересекаются в одной точке. Эта точка называется ортоцентром треугольника.
Высоты остроугольного треугольника расположены строго внутри треугольника.
Соответственно, точка пересечения высот также находится внутри треугольника.
В прямоугольном треугольнике две высоты совпадают со сторонами. (Это высоты, проведенные из вершин острых углов к катетам).
Высота, проведенная к гипотенузе, лежит внутри треугольника (позднее рассмотрим ее свойства).
AC — высота, проведенная из вершины С к стороне AB.
AB — высота, проведенная из вершины B к стороне AC.
AK — высота, проведенная из вершины прямого угла А к гипотенузе ВС.
Высоты прямоугольного треугольника пересекаются в вершине прямого угла (А — ортоцентр).
В тупоугольном треугольника внутри треугольника лежит только одна высота — та, которая проведена из вершины тупого угла.
Две другие высоты лежат вне треугольника и опущены к продолжению сторон треугольника.
AK — высота, проведенная к стороне BC.
BF — высота, проведенная к продолжению стороны АС.
CD — высота, проведенная к продолжению стороны AB.
Точка пересечения высот тупоугольного треугольника также находится вне треугольника:
Элементы треугольника. Высоты
Определение
Высотой треугольника называют перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону треугольника.
Свойства
1. Если треугольник остроугольный, то все основания высот принадлежат сторонам треугольника, а у тупоугольного треугольника две высоты попадают на продолжение сторон
2. Высоты треугольника (или их продолжения) пересекаются в одной точке, называемой ортоцентром
3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному
4. В остроугольном треугольнике две его высоты отсекают от него подобные треугольники
Некоторые формулы, связанные с высотой треугольника
где — площадь треугольника, — длина стороны треугольника, на которую опущена высота
Чтобы не потерять страничку, вы можете сохранить ее у себя: