Что называют волной в физике
Содержание:
Волны:
Стоя на берегу озера или пруда, вы могли наблюдать, как кольцами разбегаются волны от места, куда был брошен камень, как волны раскачивают лодку или катер. Ветер нарушает равновесие морской поверхности, кажется, что море надвигается на берег, но это не так. Не перемещаются по полю колосья, когда «волнуется» нива, они только наклоняются и опять выпрямляются. Вслед за кораблем или лодкой всегда возникает типичная картина волн.
Волновые процессы широко распространены в природе. Физические основы волновых движений различны, но все они объясняются одинаковыми законами.
Что же такое волна и каковы причины возникновения волн
Вам известно, что твердые, жидкие и газообразные тела состоят из частей, взаимодействующих между собой. Если частица тела начинает совершать колебания, то в результате взаимодействия ее с другими частицами тела это движение распространяется с определенной скоростью во всех направлениях.
Волна — процесс распространения колебаний в любой среде. Волна — это изменение состояния среды, распространяющееся в пространстве и переносящее энергию.
Наблюдения. Рассмотрим особенности распространения волн. Если рассматривать волны на поверхности воды (рис. 204), то они кажутся валами, движущимися в определенном направлении, причем расстояния между валами, или гребнями, одинаковы.
Если бросить в воду поплавок, его не будет относить волной, а он начнет совершать колебания вверх-вниз, оставаясь почти на одном месте.
При распространении волны изменяется состояние колеблющейся среды, но не перенос вещества. От брошенного камня начинает колебаться определенный участок воды, эти колебания передаются соседним участкам и постепенно распространяются во все стороны. Течение воды не возникает, перемещается только форма ее поверхности.
Опыт 1. Закрепим один конец длинного резинового шнура и легонько заставим шнур колебаться. По шнуру побежит волна (рис. 205). Чем сильнее колеблется шнур, тем больше скорость распространения волны. Волна добежит до точки крепежа, отразится и побежит в обратном направлении.
При распространении волны изменяется только форма шнура, а каждый его участок колеблется относительно своего положения равновесия, причем колебания происходят в направлении, перпендикулярном направлению распространения волны (рис. 206). Такие волны называют поперечными волнами.
Поперечные волны
Поперечные волны — это волны, в которых частицы совершают колебания в направлении, перпендикулярном направлению распространения волны.
Опыт 2. Если ударить по одному из концов длинной мягкой пружины большого диаметра, то по пружине «побежит» сжатие. Повторяя удары, можно возбудить в пружине волну, представляющую собой последовательные сжатия и растяжения пружины, «бегущие» друг за другом (рис. 207). Любой виток пружины совершает колебания вдоль направления распространения волны. Такую волну называют продольной волной.
Продольные волны
Продольные волны — это волны, в которых частицы совершают колебания вдоль направления распространения волны.
Любые волны характеризуются длиной и скоростью их распространения.
Длина волны — это расстояние между ближайшими друг к другу точками волны, колеблющимися в одинаковых фазах (рис. 208).
Длину волны обозначают греческой буквой А. (лямбда). Ее единицей является один метр (1 м).
Волны любого происхождения распространяются в пространстве не мгновенно, а с определенной скоростью. Например, можно увидеть, как чайка летит над морем будто все время над одним гребнем волны. В этом случае скорость полета чайки равна скорости распространения волны.
А как можно определить скорость распространения волны?
Вы уже знаете, что любое колебание характеризуется периодом колебаний, то есть временем, после которого колебания повторяются. Тогда можно сказать, что за один период волна распространяется на расстояние . Поэтому скорость ее распространения можно найти по формуле:
Так как период и частота связаны соотношением
Пример №1
= 180 м
Решение
По формуле определяем скорость распространения волны на воде.
v = 180 м : 15 с = 12 м/с.
Ответ: 12 м/с.
Пример №2
Каково основное свойство механической волны?
Ответ: переносить энергию.
Интерференция волн
Для волн не очень больших амплитуд справедлив принцип суперпозиции: если в точку пространства приходят волны от нескольких источников, то эти волны накладываются друг на друга. В результате такого наложения в некоторых точках пространства может наблюдаться постоянное усиление колебаний, а в некоторых — ослабление. Выясним, почему и когда это происходит. Пусть в некоторую точку M поступают две когерентные волны — волны от двух источников , колеблющихся синхронно, то есть в одинаковых фазах и с одинаковой частотой (рис. 22.6, а).
Если волны приходят в точку М в противоположных фазах (в один и тот же момент времени одна волна «толкает» точку М вверх, а вторая «толкает» ее вниз), то волны будут постоянно гасить друг друга (рис. 22.6, б). Если же волны приходят в точку М в одинаковых фазах, то в точке M будут все время наблюдаться колебания с увеличенной амплитудой (рис. 22.6, в). явление наложения волн, вследствие которого в некоторых точках пространства наблюдается устойчивое во времени усиление или ослабление результирующих колебаний, называют интерференцией.
Дифракция волн
Судно, плывущее по морю, образует на поверхности воды волну. Если на своем пути волна встретит скалу или торчащую из воды ветку, то за скалой образуется тень (то есть непосредственно за скалу волна не проникает), а за веткой тень не образуется (волна ветку огибает).
Явление огибания волнами препятствий называют дифракцией (от лат. difractus — разломанный) (рис. 22.8).
В приведенном примере дифракция волны происходит на ветке, но не происходит на скале. Но это не всегда так. Если скала достаточно удалена от берега, то на некотором расстоянии от скалы тень исчезнет — волна обогнет и скалу. Дело в том, что дифракция наблюдается в двух случаях: 1) когда линейные размеры препятствий, на которые находит волна (или размеры отверстий, сквозь которые проходит волна), сопоставимы с длиной волны; 2) когда расстояние от препятствия до места наблюдения намного больше размера препятствия.
Звуковые волны
Звучание флейты, шум мегаполиса, шорох травы, грохот водопада, человеческая речь, музыкальный звук, шум, акустический резонанс. Все это связано с распространением в пространстве определенных механических волн, которые называют звуковыми волнами. Их изучает акустика — наука о звуке. С элементами акустики вы начали знакомиться в курсе физики 9 класса. Итак, вспоминаем и узнаем новое.
Звуковые (акустические) волны — это механические волны с частотами от 20 Гц до 20 кГц. Звуковые волны обычно доходят до уха через воздух — в виде последовательных сгущений и разрежений (то есть в воздухе звуковые волны являются продольными). В зонах сгущений (разрежений) давление воздуха незначительно больше (меньше) атмосферного (рис. 23.1).
Рис. 23.1. Человеческое ухо воспринимает звуковые волны с избыточным (звуковым) давлением примерно от 20 мкПа (0 децибелов — порог слышимости) до 20 Па (120 децибелов — болевой порог). Для сравнения =100 000 Па
Звук — механическая волна, потому все свойства волнового движения касаются и звука.
Как связаны субъективные и объективные характеристики звука
Все физические величины, характеризующие механические волны (амплитуда, частота, длина, энергия), являются и характеристиками звука. Эти величины не зависят от особенностей восприятия звука человеком, поэтому их называют объективными, или физическими, характеристиками звука. Субъективные характеристики звука (громкость, высота, тембр) обусловлены особенностями слуха человека, поэтому их называют физиологическими. Понятно, что физические и физиологические характеристики звука связаны (см. таблицу).
Громкость звука определяется прежде всего амплитудой звуковой волны (звуковым давлением), однако зависит и от частоты звуковой волны. Человеческое ухо плохо воспринимает звуки низких (около 20 Гц) и высоких (около 20 кГц) частот, лучше всего — средних частот (1–3 кГц).
Громкость звука измеряют в децибелах (дБ). Так, при частоте звука 1 кГц и звуковом давлении 20 Па громкость звука составляет 120 дБ — это болевой порог звука — наиболее громкий звук, который может воспринимать человек, не чувствуя боли (звук такой громкости издает двигатель реактивного самолета).
Тембр звука определяется составом звуковой волны: кроме основной частоты (по которой мы и оцениваем высоту звука) любой звук содержит несколько более слабых и более высоких дополнительных частот — обертонов. Именно благодаря тембру мы узнаем человека по голосу, отличаем звуки фортепиано от звуков флейты и т. д. Каждый музыкальный инструмент, каждый человек или животное имеют свой тембр.
Что такое акустический резонанс
На любое тело, расположенное в пределах распространения звуковой волны, действует периодическая сила, частота которой равна частоте волны. Под действием этой силы тело начинает совершать вынужденные колебания. Если частота собственных колебаний тела сов падает с частотой звуковой волны, то амплитуда колебаний тела увеличивается и оно начинает издавать звук — наблюдается акустический резонанс.
Акустический резонанс — это явление резкого возрастания амплитуды звукового сигнала при приближении частоты сигнала-возбудителя к частоте собственных колебаний системы.
Наблюдать акустический резонанс можно с помощью опыта с двумя камертонами, имеющими одинаковую частоту (рис. 23.3).
Акустический резонанс используют для увеличения интенсивности звука, созданного некоторым источником (струной, ножками камертона, голосовыми связками и т. д.). Например, для увеличения громкости камертона его присоединяют к деревянному ящику (резонатору), собственная частота колебаний воздуха в котором равна частоте колебаний камертона. Камертон, присоединенный к резонатору, звучит гораздо громче, чем тот, который держат в руке.
Акустический резонанс используют во многих музыкальных инструментах. Воздух в трубах органа, корпусах арф, бандур, гитар и т. д. резонирует с тонами и обертонами звуков, издаваемых колеблющимися телами, и усиливает их. Полость рта — резонатор для звуковых волн, которые создаются благодаря колебаниям голосовых связок. Рис. 23.3. Если заставить звучать один из камертонов, из-за резонанса начнет звучать и второй
Звуковая волна, достигнув уха, испытывает ряд преобразований. Сначала она действует на барабанную перепонку, заставляя ее вибрировать. Чем громче звук, тем сильнее вибрирует перепонка, передавая звуковые колебания в среднее ухо, где они усиливаются.
Усиленный звук попадает во внутреннее ухо с заполненной жидкостью улиткой. Поверхность улитки покрыта волосковыми клетками, количество которых достигает 15 000. Каждая клетка резонирует с определенным диапазоном частот. Обнаружив «собственную» частоту, клетка начинает колебаться, возбуждая нервные окончания, и в мозг идет нервный импульс — человек слышит звук.
С возрастом количество волосковых клеток уменьшается (от 15 000 у ребенка до 4 тысяч у пожилого человека). Первыми погибают клетки, «отвечающие» за высокую частоту, поэтому взрослый человек не слышит высоких звуков (подросток слышит звуки до 22 кГц, пожилой человек — до 12 кГц).
Вспоминаем инфра- и ультразвук
Инфразвук (от лат. infra — ниже, под) — это механические волны, частота которых меньше 20 Гц. Инфразвуковые волны возникают во время штормов, землетрясений, цунами, извержений вулканов, вследствие ударов о берег морских волн. Некоторые существа способны воспринимать инфразвуковые волны (рис. 23.4). Источником инфразвука могут быть и объекты, созданные человеком: турбины, двигатели внутреннего сгорания и т. д. В городах наибольший уровень инфразвука около автомагистралей.
Инфразвук очень опасен для животных и человека: он может вызывать симптомы морской болезни, головокружение, потерю зрения, стать причиной повышенной агрессивности. При длительном воздействии интенсивное инфразвуковое излучение может привести к остановке сердца. При этом человек даже не понимает, что происходит, ведь он не слышит инфразвука. Механические волны, частота которых превышает 20 кГц, называют ультразвуковыми волнами (от лат. ultra — сверх, за пределами).
Ультразвук есть в шуме ветра и водопада, в звуках, которые издают некоторые живые существа. Установлено, что ультразвук до 100 кГц воспринимают многие насекомые и грызуны; улавливают его и собаки.
Слабый ультразвук — основа ультразвуковой локации — определения расположения и характера движения объекта с помощью ультразвука. Так, летучие мыши и дельфины, излучая ультразвук и воспринимая его эхо, могут даже в полной темноте найти дорогу или поймать добычу. Ультразвуковое исследование позволяет «увидеть» еще не родившегося младенца, исследовать состояние внутренних органов, выявить инородные тела в тканях. Ультразвуковую локацию применяют также на морских судах — для выявления объектов в воде (сонары) и исследования рельефа морского дна (эхолоты); в металлургии — для выявления и установления размеров дефектов в изделиях (дефектоскопы).
Мощный ультразвук применяют в технике (обработка прочных материалов, сварка, очистка поверхностей от загрязнений); медицине (измельчение камней в организме, что позволяет избежать хирургических операций); пищевой промышленности (изготовление сыров, соусов); косметологии (изготовление кремов, зубной пасты).
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Волны
Волна́ — изменение состояния среды (возмущение), распространяющееся в этой среде и переносящее с собой энергию. Другими словами: «…волнами или волной называют изменяющееся со временем пространственное чередование максимумов и минимумов любой физической величины, например, плотности вещества, напряжённости электрического поля, температуры [1] ».
Более правильное определение: Волна — это явление распространения в пространстве с течением времени возмущения физической величины.
Независимо от природы волны перенос энергии осуществляется без переноса вещества; последнее может возникнуть лишь как побочный эффект. Перенос энергии — принципиальное отличие волн от колебаний, в которых происходят лишь «местные» преобразования энергии. Волны же, как правило, способны удаляться на значительные расстояния от места своего возникновения. По этой причине волны иногда называют «колебанием, оторвавшимся от излучателя».
Большинство волн по своей природе являются не новыми физическими явлениями, а лишь условным названием для определённого вида коллективного движения. Так, если в объёме газа возникла звуковая волна, то это не значит, что в этом объёме появились какие-то новые физические объекты. Звук — это лишь название для особого скоординированного типа движения тех же самых молекул. То есть большинство волн — это колебания некоторой среды. Вне этой среды волны данного типа не существуют (например, звук в вакууме).
Имеются, однако, волны, которые являются не «рябью» какой-либо иной среды, а представляют собой именно новые физические сущности. Так, электромагнитные волны в современной физике — это не колебание некоторой среды (называвшейся в XIX веке эфиром), а самостоятельное, самоподдерживающееся поле, способное распространяться в вакууме. Аналогично обстоит дело и с волнами вероятности материальных частиц.
Некоторые явления также называют волнами, однако каждая из них обладают собственной спецификой. Так, с определёнными оговорками, говорят про: температурные волны, волны вероятности электрона и других частиц, волны горения, волны химической реакции, волны плотности реагентов, волны плотности транспортных потоков.
Отметим, что явления, выглядящие как волны, но не способные сами распространяться (как, например, песчаные дюны), волнами не являются.
Содержание
Характеристики волны
Временна́я и пространственная периодичности
В отличие от стационарного колебания волны имеют две основные характеристики:
Временная и пространственная периодичности взаимосвязаны, что отражено в законе дисперсии, который определяет, как именно волны будут выглядеть и распространяться. В упрощённом виде для линейных волн эта зависимость имеет следующий вид [2] :
где c — скорость распространения волны в данной среде.
Интенсивность волны
О силе волны судят по её амплитуде. В отличие от колебания амплитуда волны — скалярная величина.
где A — амплитуда; k — коэффициент пропорциональности, зависящий от природы волны и свойств среды, где эта волна распространяется.
Классификации волн
Имеется множество классификаций волн, различающиеся по своей физической природе, по конкретному механизму распространения, по среде распространения и т. п.
В зависимости от физической среды, в которой распространяются волны, их свойства различны и поэтому различают:
По виду фронта волны (поверхности равных фаз):
По демонстрируемым волнами физическим проявлениям:
По постоянству во времени различают:
Волновые уравнения
Математическое описание волн основывается на представлении о них, как о пространственно распространяющихся колебаниях, и в общем виде записывается:
Более определённый вид уравнения зависит от типа волны.
Гармоническая волна
Изменение колеблющейся величины u для гармонически распространяющейся волны в любой точке описывается формулой:
или
где A — амплитуда, t — время, а T — период волны.
В любой другой точке, расположенной на расстоянии r от первой в направлении распространения волны, изменение u происходит с опозданием на время t1 :
где c — скорость распространения волны в данной среде.
Лучи волны
Лучом волны называется линия, направление которой совпадает с направлением потока энергии в этой волне в каждой её точке. Например, плоской волне (см. раздел «Классификация волн») соответствует пучок параллельных прямых лучей; сферической волне — радиально расходящийся пучок лучей.
Расчёт формы лучей при небольшой длине волны — по сравнению с препятствиями, поперечными размерами фронта волны, расстояниями до схождения волн и т. п. — позволяет упростить сложный расчёт распространения волны. Это применяется в геометрической акустике и геометрической оптике.
Происхождение волн
Волны могут генерироваться различными способами.
Общие свойства волн
Распространение в однородных средах
При распространении волн изменения их амплитуды и скорости в пространстве и времени зависят от свойств анизотропности среды, сквозь которую проходят волны.
Чаще волны в некоторой среде затухают, что связано с диссипативными процессами внутри среды. Но в случае некоторых специальным образом подготовленных метастабильных сред амплитуда волны может, наоборот, усиливаться (пример: генерация лазерного излучения).
На практике монохроматические волны встречаются очень редко. Поэтому наряду с фазовой скоростью волны используется и понятие групповой скорости, то есть скорость «центра тяжести» волнового пакета.
Групповая и фазовая скорости совпадают только для линейных волн. Для нелинейных волн групповая скорость может быть как больше, так и меньше фазовой скорости. Однако когда речь идёт о скоростях, близких к скорости света, проявляется заведомое неравноправие между групповой и фазовой скоростями. Фазовая скорость не является ни скоростью движения материального объекта, ни скоростью передачи данных, поэтому она может превышать скорость света, не приводя при этом ни к каким нарушениям теории относительности. Групповая же скорость характеризует скорость движения сгустка энергии, переносимой волновым пакетом, и потому не должна превышать скорость света. Однако при распространении волны в метастабильной среде удаётся в определённых случаях добиться групповой скорости, превышающей скорость света.
Поскольку волна переносит энергию и импульс, то её можно использовать для передачи информации. При этом возникает вопрос о максимально возможной скорости передачи информации с помощью волн данного типа (чаще всего речь идёт об электромагнитных волнах). При этом скорость передачи информации никогда не может превышать скорости света, что было подтверждено экспериментально даже для волн, в которых групповая скорость превышает скорость света.
Пространственные размеры волны
Когда говорят о пространственном размере волны, то имеют в виду размер той области пространства, где амплитуду колебания нельзя считать (в рамках рассматриваемой задачи) пренебрежимо малой. Большинство волн могут, теоретически, обладать сколь угодно большим размером, как в направлении движения, так и поперёк него. В реальности же все волны обладают конечными размерами. Продольный размер волны, как правило, определяется длительностью процесса излучения волны. Поперечный же размер определяется рядом параметров: размером излучателя, характером распространения волны (например, плоская, сферически расходящаяся волна и т. д.).
Некоторые виды волн, в частности, солитоны, являются ограниченными волнами по построению.
Поляризация волн
Если в поперечной волне нарушается симметрия распределения возмущений (например, напряжённость электрического и магнитного полей в электромагнитных волнах) относительно направления её распространения, то мы имеем дело с поляризованной волной. В продольной волне поляризация возникнуть не может, т. к. распространение возмущения всегда совпадает с направлением распространения волны.
Подробней на эту тему см. статью «Поляризация волн».
Взаимодействие с телами и границами раздела сред
Если на пути волны встречается какой-либо дефект среды, тело или граница раздела двух сред, то это приводит к искажению нормального распространения волны. В результате этого часто наблюдаются следующие явления:
Конкретные эффекты, возникающие при этих процессах, зависит от свойств волны и характера препятствия.
Наложение волн
Излучения с разной длиной волны, но одинаковые по физической природе, могут взаимодействовать друг с другом, интерферировать. При этом могут возникнуть следующие частные эффекты:
Конечный результат проявления от встречи волн зависит от их свойств: физической природы, когерентности, поляризации и т. д.