Что называют степенью одночлена
Одночлен и его стандартный вид
теория по математике 📈 алгебраические выражения
Одночлен – это простейшее алгебраическое выражение, которое состоит из произведения чисел, переменных и их степеней. Никаких других действий одночлен не имеет. Числовой множитель у одночлена называется коэффициентом.
Пример №1. Рассмотрим примеры одночленов.
Стандартный вид одночлена
Чтобы определить коэффициент у одночлена, он должен быть представлен в стандартном виде.
Что такое одночлен стандартного вида?
Одночлен стандартного вида – это одночлен, у которого на первом месте стоит коэффициент, а далее – буквенные множители (переменные).
Такие одночлены приведены в примере №1. Рассмотрим, как привести одночлен к стандартному виду.
Здесь выполняем умножение чисел 3 и (-2), затем степеней х и у (при умножении степеней с одинаковым основанием показатели складываем, а основание оставляем тем же); записываем на первом месте число (коэффициент одночлена), а затем уже степени. Получаем одночлен стандартного вида.
-12a 3 b 2 (-4b 7 )=48a 3 b 9
Данный ответ получен после умножения чисел и степеней с одинаковым основанием. Записан на первом месте коэффициент 48, а затем остальные множители.
Степень одночлена
Сумму показателей степени переменных называют степенью одночлена.
Рассмотрим, как найти степень одночлена.
– 113с 3 х 6
У переменных показатели степени равны 3 и 6, складываем их и получаем 9. Значит, степень одночлена равна 9. Пример №5.
18ху
У этого одночлена степень равна 2, так как у переменных х и у первая степень, складывая 1 и 1, получаем 2.
Степень одночлена
Что такое степень одночлена? Как ее найти?
Степенью одночлена называют сумму показателей степеней всех входящих в него переменных.
Если одночлен не содержит переменных (то есть является числом), то его степень считают равной нулю.
Таким образом, чтобы найти степень одночлена, надо определить показатель каждой из входящих в него переменных, и сложить их.
Показатель a равен 1, показатель b — 2, показатель c — 4. Степень одночлена равна сумме этих показателей: 1+2+4=7.
1+1+1=3. Следовательно, степень этого одночлена равна 3.
степень данного одночлена равна 1.
5+10+2=17. Значит, это — одночлен 17-й степени.
Одночлен не содержит переменных. По определению, степень такого одночлена равна нулю.
3 комментария
Спасибо за подробное описание, а то лишь «сумма показателей степеней переменных» сразу не очень понятно было
Спасибо большое! Очень помогает ваш сайт в изучении школьной алгебры.
Определение одночлена: сопутствующие понятия, примеры
Одночлены являются одним из основных видов выражений, изучаемых в рамках школьного курса алгебры. В этом материале мы расскажем, что это за выражения, определим их стандартный вид и покажем примеры, а также разберемся с сопутствующими понятиями, такими как степень одночлена и его коэффициент.
Что такое одночлен
В школьных учебниках обычно дается следующее определение этого понятия:
К одночленам относятся числа, переменные, а также их степени с натуральным показателем и разные виды произведений, составленные из них.
Что такое стандартный вид одночлена и как привести выражение к нему
Для удобства работы все одночлены сначала приводят к особому виду, называемому стандартным. Сформулируем конкретно, что же это значит.
Стандартным видом одночлена называют такой его вид, в которой он представляет из себя произведение числового множителя и натуральных степеней разных переменных. Числовой множитель, также называемый коэффициентом одночлена, обычно записывают первым с левой стороны.
Теперь приведем примеры одночленов, которые нужно привести к стандартному виду: 4 · a · a 2 · a 3 (здесь нужно объединить одинаковые переменные), 5 · x · ( − 1 ) · 3 · y 2 (тут нужно объединить слева числовые множители).
Привести к стандартному виду можно любой одночлен. Для этого нужно выполнить все необходимые тождественные преобразования.
Понятие степени одночлена
Очень важным является сопутствующее понятие степени одночлена. Запишем определение данного понятия.
Сам нуль принято считать одночленом с неопределенной степенью.
Приведем примеры степеней одночлена.
Одночлен, приведенный к стандартному виду, и исходный многочлен будут иметь одинаковую степень.
Понятие коэффициента одночлена
Если у нас есть одночлен, приведенный к стандартному виду, который включает в себя хотя бы одну переменную, то мы говорим о нем как о произведении с одним числовым множителем. Этот множитель называют числовым коэффициентом, или коэффициентом одночлена. Запишем определение.
Коэффициентом одночлена называют числовой множитель одночлена, приведенного к стандартному виду.
Возьмем для примера коэффициенты различных одночленов.
Одночлен. Подобные одночлены. Степень одночлена.
Одночленом является выражение, содержащее числа, натуральные степени переменных и их произведения, причем оно не должно содержать любых действий с этими числами и переменными.
Одночлен (или моном) — простое выражение в математике, которое рассматривается и используется в элементарной алгебре. Если точнее, произведение, которое состоит из числового множителя и 1-ной либо нескольких переменных, каждая из которых взята в положительной степени.
Или другими словами:
Стандартным видом одночлена является одночлен как произведение числового множителя, который стоит на 1-ом месте, и степеней разных переменных. Каждый одночлен возможно привести к стандартному виду методом перемножения всех переменных и чисел, которые входят в него.
Приведение одночлена к стандартному виду:
Произведение одночленов тоже является одночленом.
Одночлен в некоторой натуральной степени тоже оказывается одночленом.
Результаты таких действий (умножение одночленов и возведение одночлена в степень) обычно приводятся к стандартному виду.
Число 0 является нулевым одночленом.
Подобные одночлены.
2 одночлена, которые приведены к стандартному виду, являются подобными, когда они совпадают либо отличаются лишь числовым коэффициентом.
Сложение и вычитание подобных одночленов является приведением подобных слагаемых.
Одночлены, у которых произведения переменных одинаковы (порядок их может отличаться) называются подобными одночленами.
Подобными одночленами являются и ; и ; и ; 5 и −3; и .
Подобными одночленами не являются и .
Если у подобных одночленов коэффициенты равны, то они являются равными (одинаковыми) одночленами.
Подтвердить это можно, записав одночлены в стандартном виде:
8xy 3 ; xy 3 ; 8y 3 x; 2⋅4xyyy; 8x 3 y => 8xy 3 ; xy 3 ; 8xy 3 ; 8xy 3 ; 8x 3 y;
Если у подобных одночленов коэффициенты оказываются противоположными числами, то такие одночлены являются противоположными.
Умножение одночленов. Возведение одночленов в степень.
При умножении одночленов и возведении одночленов в степень пользуются правилом умножения степеней с одинаковым основанием и правилом возведения степени в степень. При этом получают одночлен, представляемый обычно в стандартном виде.
Для того, чтобы умножить одночлен на одночлен, необходимо умножить их коэффициенты и степени с равными основаниями.
Что бы возвести одночлена в степень, необходимо возвести его коэффициент в эту степень и умножить показатель степени всех букв на показатель степени, в которую возводится одночлен.
Для того, чтобы поделить одночлен на одночлен, необходимо поделить коэффициенты делимого на коэффициент делителя, к найденной части дописать множителями все буквы делимого с показателем, который равен разнице показателей этой буквы в делимом и делителе.
Складывая и вычитая многочлены используют правило раскрытия скобок.
Чтобы умножить одночлен на многочлен, необходимо все члены многочлена умножить на этот одночлен и одночлены, которые получены, сложить.
Чтобы умножить многочлен на многочлен, необходимо все члены 1-го многочлена домножить на все члены второго многочлена и члены, которые получены, сложить.
Чтобы разделить многочлен на одночлен, необходимо все члены многочлена разделить на этот одночлен и результаты, которые получены, сложить.
Понятие одночлена. Стандартный вид, коэффициент, степень
Содержание
Одночлен – одно из основополагающих понятий в алгебре. Данный урок поможет вам разобраться с его определением, а также со стандартным видом одночлена, степенью и коэффициентом.
Что такое одночлен
$$-5,5y^<12>\times 84b\times 302$$ То есть, в одночлен могут входить как несколько множителей, так и одно число или переменная.
Таким образом, запомним определение:
Числа, переменные, их степени с натуральным показателем, а также различные виды произведений, составленные из этих переменных, чисел и степеней, называют одночленами.
$$\frac<5^9>
Стандартный вид одночлена
Для удобства математических вычислений одночлен принято приводить к стандартному виду. Разберемся, что это значит.
Стандартный вид одночлена подразумевает его запись с соблюдением нескольких правил:
Коэффициент
Коэффициентом одночлена называют числовой множитель одночлена, который записан в стандартном виде.
Заметим, что после тождественных преобразований можно привести к стандартному виду абсолютно любой одночлен.
Пример
Степень одночлена
Таким образом, запомним:
Степенью одночлена, записанного в стандартном виде, будет сумма показателей степеней всех переменных, которые в него входят.