Что называют степенью многочлена

Многочлен стандартного вида

Что называют степенью многочлена

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Определение многочлена

Многочлен — это сумма одночленов. Получается, что многочлен — не что иное, как несколько одночленов, собранных «под одной крышей».

Одночлен — это частный случай многочлена.

Рассмотрим примеры многочленов:

Если многочлен состоит из двух одночленов, его называют двучленом:

Многочлен — это сумма одночленов, поэтому знак «минус» относится к числовому коэффициенту одночлена. Именно поэтому мы записываем – 3×2, а не просто 3×2.

Этот же многочлен можно записать вот так:

Это значит, что каждый одночлен важно рассматривать вместе со знаком, который перед ним стоит.

Многочлен вида 10x – 3×2 + 7 называется трехчленом.

Линейный двучлен — это многочлен первой степени: ax + b. a и b здесь — некоторые числа, x — переменная.

Если разделить многочлен с переменной x на линейный двучлен x – b (где b — некоторое положительное или отрицательное число) — остаток будет только многочленом нулевой степени. То есть некоторым числом N, которое можно определить без поиска частного.

Если многочлен содержит обычное число — это число является свободным членом многочлена.

Свободный член многочлена не имеет буквенной части. Кроме того, любое числовое выражение — это многочлен. Например, вот такие числовые выражения — тоже многочлены:

Такие выражения состоят из свободных членов.

Многочлен стандартного вида

Недостаточно просто знать, что такое многочлен и что такое одночлен. Это целая алгебраическая экосистема, где у всего есть названия, определения и особенности.

Давайте разберемся, что такое многочлен стандартного вида. Многочленом стандартного вида называют многочлен, каждый член которого имеет одночлен стандартного вида и не содержит подобных членов.

Получается, что всякий многочлен можно привести к стандартному виду. Таким образом можно получить многочлен, работать с которым гораздо проще и приятнее.

К стандартному виду многочлен приводится очень просто. Нужно лишь привести в нем подобные слагаемые.

Подобные слагаемые — это подобные члены многочлена. Приведение подобных слагаемых в многочлене — приведение его подобных членов. Тут же возникает резонный вопрос: Что такое подобные члены многочлена? Это члены с одинаковой буквенной частью.

Давайте разберем на примере, как «нестандартный» многочлен приводится к стандартному виду.

Дан красавец многочлен: 3x + 5xy2 + x – xy2

Приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:

Как видите, в получившемся многочлене нет подобных членов. Такой многочлен — это многочлен стандартного вида.

Степень многочлена

Многочлен может иметь степень — имеет на это полное право.

Степень многочлена стандартного вида — это наибольшая из степеней, входящих в него одночленов.

Из определения можно сделать вывод, что степень многочлена возможно определить только после приведения его к стандартному виду.

Рассмотрим на примере:

Дан многочлен 6x + 4xy2 + x + xy2

Сначала приводим многочлен к стандартному виду — для этого приводим подобные слагаемые:

Получаем многочлен стандартного вида 6x + 4xy2 + x + xy2 = 7x + 5xy2.

Отсюда делаем вывод, что многочлен 7x + 5xy2 — многочлен второй степени.

Кроме того, можно сделать вывод, что и исходный многочлен 6x + 4xy2 + x + xy2 — многочлен второй степени, поскольку оба многочлена равны друг другу.

В некоторых случаях необходимо сначала привести к стандартному виду одночлены многочлена, а затем уже и сам многочлен.

Пример:

Получившийся многочлен без труда приводим к стандартному виду. Приводим подобные слагаемые:

Коэффициенты многочлена

Коэффициенты членов многочлена — это числа, которые указаны перед переменными множителями. Если перед переменной нет числа, то коэффициент этого члена = 1.

Иными словами — коэффициенты членов многочлена — это члены многочлена, представленные в виде стандартных одночленов.

Например:

Все одночлены имеют стандартный вид. 2, 5 и 18 — коэффициенты членов данного многочлена.

Кажется, со стандартным видом многочлена все понятно. Чтобы без труда приводить любой многочлен к стандартному виду, нужно потренироваться, ведь в 7 классе только и разговоров, что о многочленах. Давайте разберем несколько примеров. Попробуйте решить их самостоятельно, сверяясь с ответами.

Задание раз. Приведите многочлен к стандартному виду и определите его степень: 4x + 6xy2 + x – xy2.

Как решаем: приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:

Получаем многочлен стандартного вида: 4x + 6xy2 + x – xy2 = 5x + 5xy2.

Ответ: стандартный вид многочлена 5x + 5xy2. Данный многочлен — многочлен второй степени.

Многочлен приведен к стандартному виду.

Как решаем: приведем подобные слагаемые. Для этого найдем все члены с одинаковыми буквенными составляющими:

Разобраться в многочленах не так-то просто. В этой теме немало нюансов и подводных камней. Чтобы не запутаться в множестве похожих одно на другое определений, побольше практикуйтесь. Чтобы перейти на следующую ступень и начать выполнение арифметических действий с многочленами, важно научиться приводить многочлен к стандартному виду.

Источник

Что называют степенью многочлена

Ключевые слова конспекта: Многочлен, стандартный вид многочлена, члены многочлена, полиномы, нуль-многочлен, степень многочлена, приведение подобных слагаемых, старший коэффициент, свободный член многочлена.

Выражение 5a 2 b – 3ab – 4а 3 + 7 представляет собой сумму одночленов 5a 2 b, –5ab, –4а 3 и 7. Такие выражения называют многочленами.

Определение. Многочленом называется сумма одночленов.

Одночлены, из которых составлен многочлен, называют членами многочлена. Например, членами многочлена х 3 у 4х 2 + 9 являются одночлены х 3 у, 4х 2 и 9.

Многочлен, состоящий из двух членов, называется двучленом, а многочлен, состоящий из трёх членов, — трёхчленом. Одночлен считают многочленом, состоящим из одного члена. Многочлены иногда называют полиномами, а двучлены — биномами (от греческих слов «поли» — «много», «номос» — «член, часть» и латинского «би» — «два, дважды»).

Зная значения переменных, входящих в многочлен, можно вычислить значение многочлена.

Пример 1. Найдём значение многочлена –0,3х 2 у – х 3 + 7у при х = –0,2, у = –1.
Имеем:
–0,3х 2 у – х 3 +7у = –0,3 • (–0,2) 2 • (–1) – (–0,2) 3 + 7 • (–1) = 0,012 + 0,008 – 7 = –6,98.

Стандартный вид многочлена

В многочлене 13х 2 у + 4 + 8ху – 6х 2 у — 9 первый и четвёртый члены имеют одинаковую буквенную часть. Члены многочлена, имеющие одинаковую буквенную часть, называются подобными членами. Подобными членами считаются и слагаемые, не имеющие буквенной части.

Сумму подобных членов многочлена можно заменить одночленом. Такое тождественное преобразование называют приведением подобных членов или приведением подобных слагаемых. Приведение подобных членов основано на переместительном и сочетательном свойствах сложения и распределительном свойстве умножения.

Пример 2. Приведём подобные члены многочлена 13х 2 у + 4 + 8ху – 6х 2 у — 9.
Имеем:
13х 2 у + 4 + 8ху – 6х 2 у – 9 = (13х 2 у – 6х 2 у) + 8ху + (4 – 9) = (13 – 6)х 2 у + 8ху – 5 = 7х 2 у + 8ху – 5.

В многочлене 7х 2 у + 8ху – 5 каждый член является одночленом стандартного вида, причём среди них нет подобных членов. Такие многочлены называются многочленами стандартного вида.

Рассмотрим многочлен стандартного вида За 3 – 5а 3 b 2 + 7. Его членами являются одночлены третьей, пятой и нулевой степени. Наибольшую из этих степеней называют степенью многочлена. Таким образом, этот многочлен является многочленом пятой степени.

Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов. Степенью произвольного многочлена называют степень тождественно равного ему многочлена стандартного вида.

Пример 3. Определим степень многочлена а 6 + 2а 2 b – а 6 + 1.
Для этого приведём многочлен к стандартному виду: а 6 + 2а 2 b – а 6 + 1 = 2a 2 b + 1.
Степень полученного многочлена равна трём. Значит, и степень заданного многочлена равна трём.

Если многочлен является числом, отличным от нуля, то степень такого многочлена равна 0. Число нуль называют нуль-многочленом. Его степень считается не определённой.

Среди многочленов выделяют многочлены с одной переменной. Многочлен n-й степени с одной переменной в стандартном виде записывается так: а0х n + а1х n-1 + а2х n-2 + … + аn-2х 2 + аn-1х + аn, где х — переменная, а0, a1 а2, …, аn-1, аn — произвольные числа, n N или n = 0. Коэффициент при х n называют старшим коэффициентом (в нашем случае это а0). Слагаемое, не содержащее переменной х, называют свободным членом многочлена (в нашем случае это аn). Например, старший коэффициент многочлена х 4 + 2х 3 х 2 + 3х равен 1, а свободный член равен нулю.

Заметим, что значение многочлена с переменной х при х = 0 равно свободному члену этого многочлена, а при х = 1 — сумме его коэффициентов.

Что называют степенью многочлена

Это конспект по математике на тему «Многочлен и его стандартный вид». Выберите дальнейшие действия:

Источник

Многочлен, его стандартный вид, степень и коэффициенты членов.

Навигация по странице.

Многочлен и его члены – определения и примеры

В 7 классе многочлены изучаются сразу после одночленов, это и понятно, так как определение многочлена дается через одночлены. Дадим это определение, объясняющее что такое многочлен.

Многочлен – это сумма одночленов; одночлен считается частным случаем многочлена.

Для удобства описания многочленов вводится определение члена многочлена.

Члены многочлена – это составляющие многочлен одночлены.

Многочлены, которые состоят из двух и трех членов, имеют специальные названия – двучлен и трехчлен соответственно.

Так x+y – это двучлен, а 2·x 3 ·q−q·x·x+7·b – трехчлен.

Подобными членами многочлена называются подобные слагаемые в многочлене.

Многочлен стандартного вида

Для многочленов, как и для одночленов, существует так называемый стандартный вид. Озвучим соответствующее определение.

Многочлен стандартного вида – это многочлен, каждый член которого является одночленом стандартного вида и который не содержит подобных членов.

Заметим, что при необходимости всегда можно привести многочлен к стандартному виду.

К многочленам стандартного вида относится еще одно понятие – понятие свободного члена многочлена.

Свободным членом многочлена называют член многочлена стандартного вида без буквенной части.

Степень многочлена – как ее найти?

Еще одним важным сопутствующим определением является определение степени многочлена. Сначала определим степень многочлена стандартного вида, это определение базируется на степенях одночленов, находящихся в его составе.

Степень многочлена стандартного вида – это наибольшая из степеней входящих в его запись одночленов.

Теперь выясним, как найти степень многочлена произвольного вида.

Степенью многочлена произвольного вида называют степень соответствующего ему многочлена стандартного вида.

Итак, если многочлен записан не в стандартном виде, и требуется найти его степень, то нужно привести исходный многочлен к стандартному виду, и найти степень полученного многочлена – она и будет искомой. Рассмотрим решение примера.

Коэффициенты членов многочлена

Пусть все члены многочлена являются одночленами стандартного вида. Коэффициенты одночленов в этом случае называют коэффициентами членов многочлена. Часто можно слышать, что коэффициенты членов многочлена называют коэффициентами многочлена.

Источник

Одночлен и многочлен. Степень одночлена и многочлена. Стандартный вид одночлена и многочлена

Одночленом называется выражение, которое содержит числа, натуральные степени переменных и их произведения и при этом не содержит никаких других действий с этими числами и переменными.

Любой множитель в одночлене называется коэффициентом. Часто коэффициентом называют лишь числовой множитель . Например, коэффициент одночлена –12сx 6 y 5 равен –12. Одночлены называются подобными, если они одинаковы или отличаются лишь коэффициентами. Поэтому, если два или несколько одночленов имеют одинаковые буквы или их степени, они также подобны.

Степенью одночлена называют сумму показателей степеней всех входящих в него переменных. Если одночлен не содержит переменных, то есть является числом, то его степень считают равной нулю.

Например, степень одночлена 8x 3 yz 2 равна 6, одночлена 6x равна 1, степень одночлена –10 равна 0.

Стандартным видом одночлена называется одночлен в виде произведения числового множителя, стоящего на первом месте, и степеней различных переменных. Любой одночлен можно привести к стандартному виду путем перемножения всех переменных и чисел, входящих в него. Приведем пример приведения одночлена к стандартному виду:

Многочленом называется сумма одночленов. Одночлены, из которых составлен многочлен, называют членами многочлена. Так членами многочлена 4x 2 y – 5xy + 3x – 1 являются 4x 2 y, –5xy, 3x и –1.

Если многочлен состоит из двух членов, то его называют двучленом, если из трех – трехчленом. Одночлен считают многочленом, состоящим из одного члена.

В многочлене 7x 3 y 2 – 12 + 4x 2 y – 2y 2 x 3 + 6 члены 7x 3 y 2 и –2y 2 x 3 являются подобными слагаемыми, так как имеют одну и ту же буквенную часть. Подобными являются и слагаемые –12 и 6, не имеющие буквенной части. Подобные слагаемые в многочлене называют подобными членами многочлена, а приведение подобных слагаемых в многочлене – приведением подобных членов многочлена. Приведем для примера подобные члены в многочлене 7x 3 y 2 – 12 + 4x 2 y – 2y 2 x 3 + 6 = 5x 3 y 2 + 4x 2 y – 6.

Многочлен называется многочленом стандартного вида, если каждый его член является одночленом стандартного вида и этот многочлен не содержит подобных слагаемых.

Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов. Степенью произвольного многочлена называют степень тождественно равного ему многочлена стандартного вида.

Для примера, найдем степень многочлена 8x 4 y 2 – 12 + 4x 2 y – 3y 2 x 4 + 6 – 5y 2 x 4 :

8x 4 y 2 – 12 + 4x 2 y – 3y 2 x 4 + 6 – 5y 2 x 4 = 4x 2 y – 6.

Заметим, что в исходный многочлен входят одночлены шестой степени, но при приведении подобных членов все они сократились, и получился многочлен третьей степени, значит и исходный многочлен имеет степень 3!

Источник

Степень полинома: как определить, примеры и упражнения

Содержание:

В степень полинома в а переменная задается членом с наибольшим показателем, и если многочлен имеет две или более переменных, то степень определяется суммой показателей каждого члена, причем большая сумма является степенью полинома.

Давайте посмотрим, как определить степень многочлена на практике.

Давайте выберем из четырех членов тот, у которого показатель больше, это член:

Если рассматриваемый многочлен имеет более одной переменной, то степень может быть:

-По отношению к переменной

Абсолютная степень находится, как объяснено в начале: добавление показателей каждого члена и выбор наибольшего.

Вместо этого степень полинома по отношению к одной из переменных или букв является наибольшим значением показателя степени, которое имеет указанная буква. Суть станет яснее с примерами и решенными упражнениями в следующих разделах.

Примеры степени полинома

Многочлены могут быть классифицированы по степени: первая степень, вторая степень, третья степень и так далее. В примере на рисунке 1 энергия является одночленом первой степени массы.

Также важно отметить, что количество членов, которые имеет многочлен, равно класс плюс 1. Так:

-Полиномы первой степени имеют 2 члена:1х + аили

-У полинома второй степени есть 3 члена:2Икс 2 + а1х + аили

-Полином третьей степени состоит из 4 членов:3Икс 3 + а2Икс 2 + а1х + аили

И так далее. Внимательный читатель заметит, что многочлены в предыдущих примерах записаны в виде уменьшение, то есть помещая термин на первое место Высокий класс.

В следующей таблице показаны различные полиномы, как от одной, так и от нескольких переменных, и их соответствующие абсолютные градусы:

Таблица 1. Примеры многочленов и их степеней.

Последние два полинома имеют более одной переменной. Из них термин с наивысшей абсолютной степенью был выделен жирным шрифтом, чтобы читатель мог быстро проверить степень. Важно помнить, что если переменная не имеет записанного показателя степени, подразумевается, что указанный показатель равен 1.

Например, в избранном термине ab 3 Икс 2 есть три переменные, а именно: к, б Y Икс. В этот срок к повышается до 1, то есть:

Таким образом ab 3 Икс 2 = а 1 б 3 Икс 2

Поскольку показатель b равен 3, а показатель x равен 2, немедленно следует, что степень этого члена равна:

Порядок работы с многочленами

При работе с многочленами важно обращать внимание на его степень, так как в первую очередь и перед выполнением какой-либо операции удобно выполнить следующие шаги, в которых степень предоставляет очень важную информацию:

-Уменьшить подобные термины, процедура, которая состоит в алгебраическом сложении всех терминов одной и той же переменной и степени, найденных в выражении.

-Если это точно, полиномы дополняются, вставляя члены с коэффициентом 0, если отсутствуют члены с показателем степени.

Упорядочить, уменьшить и дополнить многочлен

Следовательно, P (x) имеет степень 7. Затем полином упорядочивается, начиная с этого члена слева:

Замените эти результаты на P (x):

И, наконец, проверяется полином на предмет отсутствия какой-либо экспоненты, и действительно, отсутствует член с показателем 6, поэтому он завершается такими нулями:

Теперь можно заметить, что в полиноме осталось 8 членов, поскольку, как было сказано ранее, количество членов равно степени +1.

Важность степени полинома при сложении и вычитании

С полиномами вы можете выполнять операции сложения и вычитания, в которых добавляются или вычитаются только одинаковые члены, которые имеют одинаковую переменную и одинаковую степень. Если одинаковых терминов нет, просто указывается сложение или вычитание.

После того, как было выполнено сложение или вычитание, последнее является суммой противоположных величин, степень полученного многочлена всегда равна или меньше степени многочлена при добавлении наивысшей степени.

Решенные упражнения

— Упражнение решено 1

Найдите следующую сумму и определите ее абсолютную степень:

Решение

Это многочлен с двумя переменными, поэтому его удобно сократить:

Оба члена имеют степень 3 по каждой переменной. Следовательно, абсолютная степень полинома равна 3.

— Упражнение выполнено 2

Выразите площадь следующей плоской геометрической фигуры в виде многочлена (рисунок 2 слева). Какова степень полученного многочлена?

Решение

Поскольку это площадь, результирующий многочлен должен иметь степень 2 от переменной x. Чтобы определить подходящее выражение для площади, фигура разбивается на известные области:

Площадь прямоугольника и треугольника соответственно: основание x высота Y основание x высота / 2

К1 = х. 3x = 3x 2 ; К2 = 5. х = 5х; К3 = 5. (2x / 2) = 5x

Теперь три полученных выражения складываются, и мы получаем площадь фигуры как функцию от Икс:

3x 2 + 5x + 5x = 3x 2 + 10x

Ссылки

Джабутикаба: 15 удивительных преимуществ для здоровья

Поведенческая терапия: первая, вторая и третья волна

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *