Что называют собственным полупроводником

Собственный полупроводник

Полупроводник без примесей обладает собственной электропроводностью, которая имеет два вклада: электронный и дырочный. Если к полупроводнику не приложено напряжение, то электроны и дырки совершают тепловое движение и суммарный ток равен нулю. При приложении напряжения в полупроводнике возникает электрическое поле, которое приводит к возникновению тока, называемого дрейфовым током iдр. Полный дрейфовый ток является суммой двух вкладов из электронного и дырочного токов:

iдр= in+ ip,где индекс n соответствует электронному вкладу, а p — дырочному. Удельное сопротивление полупроводника зависит от концентрации носителей и от их подвижности, как следует из простейшей модели Друде. В полупроводниках при повышении температуры вследствие генерации электрон-дырочных пар концентрация электронов в зоне проводимости и дырок в валентной зоне увеличивается значительно быстрее, нежели уменьшается их подвижность, поэтому с повышением температуры проводимость растет. Процесс гибели электрон-дырочных пар называется рекомбинацией. Фактически проводимость собственного полупроводника сопровождается процессами рекомбинации и генерации и если скорости их равны, то говорят что полупроводник находится в равновесном состоянии. Количество термически возбуждённых носителей зависит от ширины запрещённой зоны, поэтому количество носителей тока в собственных полупроводниках мало по сравнению с легированными полупроводниками и сопротивление их значительно выше.

Связанные понятия

Баллистические транзисторы — собирательное название электронных устройств, где носители тока движутся без диссипации энергии и длина свободного пробега носителей намного больше размера канала транзистора. В теории эти транзисторы позволят создать высокочастотные (ТГц диапазон) интегральные схемы, поскольку быстродействие определяется временем пролёта между эмиттером и коллектором или, другими словами, расстоянием между контактами, делённым на скорость электронов. В баллистическом транзисторе скорость.

Магнитосопротивление (магниторезистивный эффект) — изменение электрического сопротивления материала в магнитном поле. Впервые эффект был обнаружен в 1856 Уильямом Томсоном. В общем случае можно говорить о любом изменении тока через образец при том же приложенном напряжении и изменении магнитного поля. Все вещества в той или иной мере обладают магнетосопротивлением. Для сверхпроводников, способных без сопротивления проводить электрический ток, существует критическое магнитное поле, которое разрушает.

109—1010 Гц) в однородном многодолинном полупроводнике при приложении к нему сильного электрического поля. Впервые этот эффект наблюдался Джоном Ганном в 1963 г. на арсениде галлия, затем явление осцилляций тока было обнаружено в фосфиде индия, фосфиде галлия и ряде других полупроводниковых соединений.

Источник

Собственный полупроводник

Полупроводник без примесей обладает собственной электропроводностью, которая имеет два вклада: электронный и дырочный. Если к полупроводнику не приложено напряжение, то электроны и дырки совершают тепловое движение и суммарный ток равен нулю. При приложении напряжения в полупроводнике возникает электрическое поле, которое приводит к возникновению тока, называемого дрейфовым током iдр. Полный дрейфовый ток является суммой двух вкладов из электронного и дырочного токов:

Расчет равновесной концентрации свободных носителей заряда

Количество разрешённых состояний для электронов в зоне проводимости (определяемая плотностью состояний) и вероятность их заполнения (определяемая функцией Ферми — Дирака) и соответственные величины для дырок задают количество собственных электронов и дырок в полупроводнике:

Что называют собственным полупроводником, Что называют собственным полупроводником,

где Nc, Nv — константы определяемые свойствами полупроводника, Ec и Ev — положение дна зоны проводимости и потолка валентной зоны соответственно, EF — неизвестный уровень Ферми, k — постоянная Больцмана, T — температура. Из условия электронейтральности ni=piдля собственного полупроводника можно определить положение уровня Ферми:

Что называют собственным полупроводником.

Отсюда видно, что в собственном полупроводнике уровень Ферми находится вблизи середины запрещённой зоны. Это даёт для концентрации собственных носителей

Что называют собственным полупроводником,

где Eg — ширина запрещённой зоны и Nc(v) определяется следующим выражением

Что называют собственным полупроводником

где mn mp — эффективные массы электронов и дырок в полупроводнике, h — постоянная Планка. Отсюда видно, что чем шире запрещённая зона полупроводника, тем меньше собственных носителей генерируется при данной температуре, и чем выше температура, тем больше носителей в полупроводнике.

Источник

Собственный полупроводник

Собственные и примесные полупроводники

Электрофизические свойства полупроводников

Полупроводниками являются вещества, занимающие по величине удельной проводимости промежуточное положение между проводниками и диэлектриками. Эти вещества обладают как свойствами проводника, так и свойствами диэлектрика. Вместе с тем они обладают рядом специфических свойств, резко отличающих их от проводников и диэлектриков, основным из которых является сильная зависимость удельной проводимости от воэдействия внешних факторов (температуры, света, электрического поля и др.)
К полупроводникам относятся элементы четвертой группы периодической таблицы Менделеева, а также химические соединения элементов третьей и пятой групп типа A III B V (GaAs, InSb) и второй и шестой групп типа A II B VI ( CdS, BbS, CdFe). Ведущее место среди полупроводниковых материалов, используемых в полупроводниковой электронике, занимают кремний, германий и арсенид галлия GaAs.

Собственные полупроводники имеют кристаллическую структуру, характеризующуюся периодическим расположением атомов в узлах пространственной кристаллической решетки. В такой решетке каждый атом взаимно связан с четырьмя соседними атомами ковалентными связями (рис. 1.1), в результате которых происходит обобществление валентных электронов и образование устойчивых электронных оболочек, состоящих из восьми электронов. При температуре абсолютного нуля (T=0° K) все валентные электроны находятся в ковалентных связях, следовательно, свободные носители заряда отсутствуют, и полупроводник подобен диэлектрику. При повышении температуры или при облучении полупроводника лучистой энергией валентный электрон может выйти из ковалентной связи и стать свободным носителем электрического заряда. (Рис. 1.2). При этом ковалентная связь становится дефектной, в ней образуется свободное (вакантное) место, которое может занять один из валентных электронов соседней связи, в результате чего вакантное место переместится к другой паре атомов. Перемещение вакантного места внутри кристаллической решетки можно рассматривать как перемещение некоторого фиктивного (виртуального) положительного заряда, величина которого равна заряду электрона. Такой положительный заряд принято называть дыркой.

Что называют собственным полупроводником

Что называют собственным полупроводником

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Полупроводники. Собственная проводимость полупроводников.

К полупроводникам относят широкий класс веществ, которые отлича­ются от металлов тем, что:

а) концентрация подвижных носителей заряда в них существенно ниже, чем концентрация атомов;

б) эта концентрация (а с ней и электропроводность) может меняться под влиянием температуры, освещения, небольшого количества примесей;

в) электрическое сопротивление уменьшается с ростом температуры.

Что называют собственным полупроводником

Полупроводники по своему строению делятся на кристаллические, амфорные и стеклообразные, жидкие. По химическому составу полупроводники делятся на элементарные, т. е. состоящие из атомов одного сорта (Ge, Si, Se, Тe), двойные, тройные, четверные соединения. Полупроводни­ковые соединения принято классифицировать по номерам групп периодической таблицы элемен­тов, к которым принадлежат входящие в соединение элементы. Например, GaAs и InSb относятся к соединениям типа A III B V (существуют также и органические полупроводники).

Строение полупроводников.

Строение полупроводников рассмотрим на примере кремния.

Что называют собственным полупроводником

В кристаллической решетке кремния (Si) каждый атом имеет четыре ближайших соседа. Кремний является четырехвалентным элементом, и взаимодействие пары соседних атомов осуществля­ется с помощью ковалентной, или парноэлектронной, связи, когда в каждой связи участвует по одному электрону от каждого атома. Это так называемые коллективизированные электроны; большую часть времени они проводят в пространстве между соседними ионами кремния, удер­живая их друг возле друга. Каждый валентный электрон может двигаться по связи вдоль всего кристалла (от одного атома к другому).

При низких температурах парноэлектронные связи достаточно прочны, они не разрывают­ся, поэтому кремний не проводит электрический ток.

Электронная проводимость.

Что называют собственным полупроводником

Дырочная проводимость.

Разрыв валентных связей при увеличении температуры приводит к образованию вакантного места с недостающим электроном, которое имеет эффективный положительный заряд и называется дыркой. Становится возможным переход валентных электронов из соседних связей на ос­вободившееся место. Такое движение отрицательного заряда (электрона) в одном направлении эквивалентно движению положительного заряда (дырки) в противоположном.

Перемещение дырок по кристаллу происходит хаотически, но если к нему приложить раз­ность потенциалов, начнется их направленное движение вдоль электрического поля. Проводи­мость кристалла, обусловленная дырками, называется дырочной проводимостью.

Электронная и дырочная проводимость чистых (беспримесных) полупроводников называется собственной проводимостью полупроводников.

Собственная проводимость полупроводников невелика. Так, в Ge число носителей заряда (электронов) составляет всего одну десятимиллиардную часть от общего числа атомов.

Источник

Что называют собственным полупроводником

Как уже отмечалось, в полупроводниках появление носителей заряда определяется рядом факторов, важнейшими из которых являются чистота материала и его температура. В зависимости от степени чистоты полупроводники делятся на собственные и примесные. Собственный полупроводник – это полупроводник, в котором отсутствуют примесные атомы другой валентности, влияющие на его электропроводность. Естественно, в реальных материалах в кристаллической решетке всегда существуют примеси, но у собственных полупроводников их концентрация пренебрежимо мала.

Рассмотрим строение полупроводникового материала, получившего наибольшее распространение в современной электронике, – кремния (Si). В кристалле этого полупроводника атомы располагаются в узлах кристаллической решетки, а электроны наружной электронной оболочки образуют устойчивые ковалентные связи, когда каждая пара валентных электронов принадлежит одновременно двум соседним атомам и крепко связана с ними. Кремний относится к IV группе таблицы Менделеева, следовательно, на наружной электронной оболочке располагаются по четыре валентных электрона; это означает, что вокруг каждого из атомов, кроме четырех собственных электронов, вращаются еще четыре соседних электрона. Таким образом, вокруг каждого атома образуются прочные электронные оболочки, состоящие из восьми обобществленных валентных электронов (рисунок 3.1). Такая связь характеризуется очень высокой прочностью.

При температуре абсолютного нуля (Т = 0 К) все энергетические состояния внутренних зон и валентная зона занята электронами полностью, а зона проводимости совершенно пуста, поэтому кристалл полупроводника фактически является диэлектриком.

Что называют собственным полупроводником

Рисунок 3.1 – Структура связей атома кремния в кристаллической решетке при Т = 0 К

При передаче кристаллической решетке дополнительной энергии, например при повышении температуры в результате поглощения каким-либо электроном этой дополнительной энергии, он разрывает ковалентную связь. Появляется вероятность его перехода в зону проводимости, где он становится свободным носителем n электрического заряда (рисунок 3.2), причем, чем больше температура, тем выше эта вероятность. Одновременно с этим у того атома полупроводника, от которого отделился электрон, возникает незаполненный энергетический уровень в валентной зоне, называемый дыркой р. Она представляет собой единичный положительный электрический заряд (равный по модулю заряду электрона) и может перемещаться по всему объему полупроводника под действием электрических полей, диффузии (в результате разности концентраций носителей заряда в различных зонах полупроводника), а также в результате теплового движения. На самом деле движутся только электроны, но их эстафетное перескакивание с атома на атом можно формально описать как движение одной дырки, перемещающийся в направлении, обратном движению электронов, т.е. в направлении поля.

Что называют собственным полупроводником

Рисунок 3.2 – Генерация пары свободных носителей заряда
«электрон – дырка» при Т > 0 К

Таким образом, в идеальном кристалле полупроводника при нагревании образуются пары носителей заряда «электрон – дырка», которые обуславливают появление собственной электрической проводимости полупроводника.

Процесс образования пары «электрон – дырка» называется генерацией свободных носителей заряда. Скорость генерации G определяется количеством пар носителей заряда, генерируемых в единицу времени. Она обратно пропорционально ширине запрещенной зоны ΔW и прямо пропорциональна температуре Т.

Эта пара существует в течение некоторого времени, называемого временем жизни носителей электрического заряда (оно обозначается τn для электронов и τp для дырок). В течение этого промежутка времени носители участвуют в тепловом движении, взаимодействуют с электромагнитными полями как единичные электрические заряды, перемещаются под действием градиента концентрации. Затем в результате хаотического движения электрона происходит восстановление ковалентной связи электрона с атомом – так называемая рекомбинация, в результате которой пара носителей заряда исчезает. Скорость рекомбинации R определяется количеством пар носителей заряда, исчезающих в единицу времени.

Что называют собственным полупроводником,(3.1)

где ΔW – ширина запрещенной зоны, Дж;

k – постоянная Больцмана, Дж/К;

T – абсолютная температура, К;

Эффективные плотности состояний рассчитываются по формулам:

Что называют собственным полупроводником(3.2)
Что называют собственным полупроводником(3.3)

где mn, mp – эффективные массы электрона и дырки соответственно, кг;

h – постоянная Планка.

Физический смысл понятия «плотность энергетических состояний» – это число состояний, приходящихся на единичный интервал энергии, или плотность состояний.

Как следует из (3.1), с увеличением температуры собственные концентрации электронов и дырок растут по экспоненциальному закону.

Энергетическая диаграмма собственного полупроводника показана на рисунке 3.3. Электроны обозначены черными кружками, а дырки – белыми. Распределение электронов по уровням энергии соответствует некоторой температуре Т, при которой в зону проводимости перешло несколько электронов, образовав в валентной зоне соответствующее количество дырок.

Что называют собственным полупроводником

Рисунок 3.3 – Энергетическая диаграмма собственного полупроводника

Как уже отмечалось, специфика собственного полупроводника состоит в том, что равновесная концентрация электронов и дырок одинакова (ni = pi). Тогда общее число свободных носителей заряда в единице объема собственного полупроводника будет равно 2ni. Под действием внешнего электрического поля с напряженностью Е в нем возникает направленное движение этих зарядов, т.е. электрический ток. В его создании принимают участие как электроны, так и дырки. Ток, создаваемый электронами, можно найти по формуле:

Что называют собственным полупроводником(3.4)

где Qn – суммарный заряд, переносимый электронами за время t через поперечное сечение полупроводника S, перпендикулярное направлению электрического поля;

е – заряд электрона;

ni – концентрация электронов в зоне проводимости, т.е. число электронов в единице объема;

V – объем электронов, проходящий через сечение S за время t;

l – длина объема V в направлении движения электронов;

Что называют собственным полупроводникомn Что называют собственным полупроводником– средняя скорость упорядоченного движения электронов (дрейфовая скорость).

Плотность тока Jn, создаваемая электронами, будет равна:

Что называют собственным полупроводником(3.5)

Средняя скорость электронов пропорциональна напряженности поля:

Что называют собственным полупроводником(3.6)

Коэффициент пропорциональности μn называется подвижностью электронов, он имеет размерность м 2 /(В*с). Физический смысл подвижности – это дрейфовая скорость, приобретаемая электроном в поле единичной напряженности.

Тогда плотность тока:

Что называют собственным полупроводником(3.7)

где Что называют собственным полупроводником– удельная электронная проводимость собственного проводника.

Аналогично для дырочной проводимости:

Что называют собственным полупроводником(3.8)

где Что называют собственным полупроводником– удельная дырочная проводимость собственного проводника;

pi – концентрация дырок в валентной зоне;

Учитывая, что в собственном полупроводнике электрический ток обусловлен движением как электронов, так и дырок, суммарная плотность тока:

Что называют собственным полупроводником
Что называют собственным полупроводником Что называют собственным полупроводником Что называют собственным полупроводником(3.9)

Тогда удельная проводимость собственного полупроводника:

Что называют собственным полупроводником=Что называют собственным полупроводником,(3.10)

а удельное сопротивление будет равно:

Что называют собственным полупроводником(3.11)

Таким образом, при любой температуре материала в состоянии термодинамического равновесия устанавливается равновесная концентрация возбужденных носителей заряда:

Что называют собственным полупроводником(3.12)
Что называют собственным полупроводником

где ΔW – ширина запрещенной зоны полупроводника;

Cn, Cp – постоянные величины для концентрации электронов в зоне проводимости и дырок в валентной зоне.

Коэффициент, равный 2, в знаменателе показателя экспоненты объясняется следующим соображением. В собственном полупроводнике для перехода электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости затрачивается энергия активации, равная ширине запрещенной зоны ΔW. При появлении электрона в зоне проводимости в валентной зоне обязательно появляется дырка, т.е. энергия ΔW затрачивается на образование пары носителей заряда.

Подвижности электронов μn и дырок μp имеют различное значение. Электроны и дырки обладают разной инерционностью при движении в поле кристаллической решетки полупроводника, т.е. отличаются друг от друга эффективными массами Что называют собственным полупроводникоми Что называют собственным полупроводником. В большинстве случаев Что называют собственным полупроводником6 – 10 7 атомов основного вещества и расстояние между ними большое, то они практически не оказывают влияния друг на друга. Поэтому примесные донорные уровни не расщепляются, и на энергетической диаграмме присутствуют в виде одного уровня, на котором находятся все лишние валентные электроны, не участвующие в ковалентных связях. Энергетический интервал ΔWn называется энергией ионизации доноров. Для кремния, например, он составляет 0,05 эВ, а для германия – 0,01 эВ, поэтому у этих полупроводников при комнатной температуре практически все доноры ионизированы.

Наряду с ионизацией примеси в электронном полупроводнике происходит и тепловая генерация, в результате которой образуется пара носителей – электрон и дырка. Однако их количество при рабочей температуре гораздо меньше, чем количество электронов, образовавшихся за счет донорной примеси. Объясняется это двумя факторами. Во-первых, энергия, равная ширине запрещенной зоны ΔW, гораздо больше энергии ионизации донора ΔWn. Во-вторых, электроны донорных атомов занимают в зоне проводимости нижние энергетические уровни, и электроны, находящиеся в валентной зоне, в результате разрыва ковалентных связей могут перейти только на более высокие уровни зоны проводимости. Для такого перехода электрон должен обладать даже более высокой энергией, нежели в собственном полупроводнике. Поэтому в полупроводнике n-типа концентрация дырок на несколько порядков меньше концентрации электронов; соответственно в этом случае электроны называются основными носителями заряда, а дырки – неосновными.

Что называют собственным полупроводником

Рисунок 3.6 – Энергетическая диаграмма полупроводника n – типа

Кроме сурьмы, типичными донорами для кремния и германия являются мышьяк (As) и фосфор (P).

Если в кристаллическую решетку кремния ввести атомы трехвалентной примеси, например, индия, имеющего на наружной электронной оболочке три валентных электрона, то эти электроны образуют ковалентные связи только с тремя соседними атомами кремния из четырех (рисунок 3.7).

Что называют собственным полупроводником

Рисунок 3.7 – Механизм действия акцепторной примеси

Одна из связей останется незаполненной из-за отсутствия у атома примеси необходимого электрона. При незначительном тепловом воздействии может произойти ее заполнение за счет электрона, перешедшего к атому примеси от соседнего основного атома. При этом атом примеси, приобретая лишний электрон, становится отрицательно заряженным ионом, а в основном атоме на том месте, откуда пришел электрон, возникает дырка. Она перемещается по связям основного вещества и, следовательно, принимает участие в проводимости полупроводника. Такая примесь, захватывающая электроны, называется акцепторной, проводимость – дырочной, или проводимостью р-типа, а сам полупроводник – дырочным, или полупроводником р-типа.

Для образования свободной дырки за счет перехода электрона от основного атома к атому примеси требуется значительно меньше энергии, чем для разрыва ковалентных связей кремния, поэтому основными носителями заряда в этом случае будут дырки, а неосновными – электроны.

С точки зрения зонной теории, акцептор – это примесный атом или дефект кристаллической решетки, создающий в запрещенной зоне энергетический уровень, свободный от электрона в невозбужденном состоянии и способный захватить электрон из валентной зоны в возбужденном состоянии.

На энергетической диаграмме полупроводника р-типа в запрещенной зоне появляется примесный уровень, расположенный на небольшом расстоянии от верхнего края («потолка») валентной зоны (рисунок 3.8). Этот уровень заполняется электронами, переходящими на него из валентной зоны, т.к. для такого перехода требуется незначительная энергия (ΔWp = 0,01 – 0,1 эВ). При комнатной температуре практически все акцепторы ионизированы, поэтому концентрация дырок примерно равна концентрации акцепторов.

Что называют собственным полупроводником

Рисунок 3.8 – Энергетическая диаграмма полупроводника р-типа

В дырочном полупроводнике, так же, как и в электронном, происходит тепловая генерация с образованием пары электрон – дырка; количество таких пар также невелико.

Применительно к акцепторному полупроводнику энергия ионизации примеси ΔWp представляет собой энергию, необходимую для присоединения недостающего электрона к акцептору.

Типичными акцепторами, кроме индия, являются бор и галлий.

Распределение электронов по энергетическим уровням для примесных полупроводников показано на рисунке 3.9.

Что называют собственным полупроводникомЧто называют собственным полупроводником

Рисунок 3.9 – Энергетические уровни для примесных полупроводников:
а – р-типа; б – n-типа

Уровни Ферми определяются для примесных полупроводников по формулам:

Что называют собственным полупроводником(3.20)
Что называют собственным полупроводником(3.21)

где ND, NA – концентрации доноров и акцепторов.

Для примесного полупроводника n-типа справедливо соотношение:

Что называют собственным полупроводником,(3.22)
Что называют собственным полупроводником.(3.23)

В целом примесные полупроводники можно охарактеризовать следующим образом. Атомы примесей создают в запрещенной зоне полупроводника дополнительные примесные энергетические уровни. Эти примеси могут либо поставлять электроны в зону проводимости, либо принимать их с уровней валентной зоны. Примесная электропроводность требует для своего появления гораздо меньшей энергии (сотые и десятые доли электрон-вольта), чем для собственной электропроводности, соответственно она обнаруживается при более низких температурах. Проявление собственной электропроводности зависит от ширины запрещенной зоны: чем она шире, тем при большей температуре это происходит.

При изменении концентрации примесей в полупроводнике изменяется концентрация носителей заряда обоих знаков. Однако произведение концентраций электронов и дырок в невырожденном полупроводнике при определенной температуре в условиях термодинамического равновесия есть величина постоянная, не зависящая от содержания примесей:

Что называют собственным полупроводником(3.24)

Это выражение называется соотношением, или законом действующих масс. Оно позволяет всегда найти концентрацию неосновных носителей заряда по известной концентрации основных. С физической точки зрения этот закон объясняется следующим образом. Если, например в полупроводнике n-типа увеличить концентрацию доноров, то возрастет количество электронов, переходящих в единицу времени с примесных уровней в зону проводимости. Соответственно возрастет скорость рекомбинации носителей заряда и уменьшится равновесная концентрация дырок.

Примесные полупроводники в целом являются электронейтральными:

Что называют собственным полупроводником(3.25)

Существуют полупроводники, которые одновременно содержат и донорные, и акцепторные примеси. Они называются компенсированными. В таких полупроводниках, несмотря на большую концентрацию примесей, уровень Ферми остаётся внутри запрещённой зоны и вырождения не наблюдается.

► Процессы переноса зарядов в полупроводниках

В полупроводниках процесс переноса зарядов может наблюдаться при наличии электронов в зоне проводимости и при неполном заполнении электронами валентной зоны. При выполнении этих условий и при отсутствии градиента температуры перенос носителей возможен либо под действием электрического поля, либо под действием градиента концентрации носителей заряда. В первом случае направленное движение носителей называется дрейфом, а во втором – диффузией. Дрейф носителей уже был рассмотрен (формулы (3.4) – (3.11)), поэтому остановимся на втором возможном процессе переноса зарядов.

При нормальных условиях энергия, необходимая для образования носителей заряда, приобретается за счет тепловых колебаний атомов. Обмениваясь энергией при своем взаимодействии с решеткой в процессе движения, носители заряда находятся в тепловом равновесии с ней. Именно поэтому они называются равновесными (n0, p0).

Свободные носители заряда могут также появиться под действием внешней энергии. Например, под воздействием освещения в локальном объеме полупроводника возникают избыточные (по сравнению с равновесными) носители заряда Δn, которые в момент генерации не находятся в тепловом равновесии с решеткой и поэтому называются неравновесными. За счет их появления распределение концентрации носителей заряда в объеме полупроводника становится неравномерным и при отсутствии градиента температуры в нем происходит диффузия – движение носителей заряда из-за градиента концентрации за счет собственного теплового хаотического движения. Фактически это означает выравнивание концентрации носителей заряда по всему объему. Плотность Фm потока частиц при диффузии (число частиц, пересекающих в единицу времени единичную площадку, перпендикулярную направлению градиента концентрации) пропорциональна градиенту концентрации grad(m) этих частиц:

Что называют собственным полупроводником(3.26)

где Dm – коэффициент диффузии.

Различные знаки левой и правой частей выражения (3.22) объясняются тем, что вектор градиента концентрации направлен в сторону возрастания аргумента, а частицы диффундируют туда, где их меньше, т.е. против градиента концентрации.

Поскольку любое направленное движение одноименно заряженных частиц есть электрический ток, то, умножив плотность потока частиц на заряд электрона е, получают плотность электронной составляющей диффузионного тока. Электроны имеют отрицательный заряд, соответственно направление вектора диффузионного тока будет совпадать с направлением вектора градиента концентраций:

Что называют собственным полупроводником(3.27)

где Что называют собственным полупроводником– коэффициент диффузии электронов;

Что называют собственным полупроводником– градиент концентрации электронов.

Заряд дырок положителен, поэтому направление вектора плотности диффузионного тока дырок должно совпадать с направлением их диффузии, т.е. противоположно электронной составляющей диффузии:

Что называют собственным полупроводником(3.28)

где Что называют собственным полупроводником– коэффициент диффузии дырок;

Что называют собственным полупроводником– градиент концентрации дырок.

Полная плотность диффузионного тока:

Что называют собственным полупроводником(3.29)

Одновременно с процессом диффузии носителей происходит процесс их рекомбинации, поэтому избыточная концентрация уменьшается в направлении от места образования неравновесных носителей заряда. Это изменение концентрации Δn(x) вдоль полупроводника при удалении на расстояние х от места их генерации (х = 0) описывается выражением

Что называют собственным полупроводником.(3.30)

Выражение для изменения концентрации дырок имеет аналогичный вид.

Расстояние L, на котором в процессе диффузии в полупроводнике без электрического поля в нем избыточная концентрация носителей заряда уменьшается в результате рекомбинации в е раз, называется диффузионной длиной. Физический смысл этого понятия – это расстояние, на которое диффундирует носитель заряда за время жизни τ. Эти параметры связаны между собой соотношениями:

Что называют собственным полупроводником(3.31)
Что называют собственным полупроводником(3.32)

© ФГБОУ ВПО «Уфимский государственный нефтяной технический университет»
Редакционно-издательский центр
Отдел допечатной подготовки и программно-методического обеспечения
Уфа 2014

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *