Что называют синусом угла а где 0 градусов а 180 градусов
Презентация по теме :»Синус,косинус и тангенс угла», 9-й класс.
Содержимое разработки
Синус, косинус и тангенс для угла от 0° до 180°
Не стыдно чего-нибудь не знать, но стыдно не хотеть учиться. (Сократ)
Какую полуокружность называют единичной?
Радиус равен 1,центр в начале координат, расположена в 1 и 2 координатной четверти.
Что называют синусом угла α, где 0°≤α≤180°
Синусом угла называется ордината точки
Что называют косинусом угла α, где 0°≤α≤180°
Косинусом угла называется абсцисса точки
В каких пределах находится значение синуса, косинуса?
0 для острого угла Cos α» width=»640″
Каким числом положительным или отрицательным является косинус острого угла? тупого угла?
Каким числом положительным или отрицательным является синус острого угла? тупого угла?
Cos α 0 для острого угла
Какой формулой связаны синус и косинус одного и того же угла?
Основное тригонометрическое тождество
Что называют тангенсом угла α, где 0°≤α≤180 °
Тангенс – это отношение синуса к косинусу этого же угла(α≠90°)
Почему тангенс не определен для угла 90°?
х = cosα ≠ 0 значит α≠ 90°
Какое общее название имеют функции f(α) = sinα, g(α) = cosα, h(α) = tgα
Леонард Эйлер ввел и само понятие функции и принятую в наши дни символику.
Он придал всей тригонометрии ее современный вид.
В треугольнике АВС угол С равен 90°. ВС = 2
Таблица СИНУСОВ для углов от 0° до 360° градусов
СИНУС (SIN α) — это одна из прямых тригонометрических функций для углов, в прямоугольном треугольнике синус острого угла равен отношению противолежащего катета к его единственной гипотенузе.
α (радианы) | 0 | π/6 | π/4 | π/3 | π/2 | π | √3π/2 | 2π |
---|---|---|---|---|---|---|---|---|
α (градусы) | 0° | 30° | 45° | 60° | 90° | 180° | 270° | 360° |
SIN α (СИНУС) | 0 | 1/2 | √ 2/2 | √3 /2 | 1 | 0 | -1 | 0 |
Угол в градусах | Sin (Синус) |
---|---|
0° | 0 |
1° | 0.0175 |
2° | 0.0349 |
3° | 0.0523 |
4° | 0.0698 |
5° | 0.0872 |
6° | 0.1045 |
7° | 0.1219 |
8° | 0.1392 |
9° | 0.1564 |
10° | 0.1736 |
11° | 0.1908 |
12° | 0.2079 |
13° | 0.225 |
14° | 0.2419 |
15° | 0.2588 |
16° | 0.2756 |
17° | 0.2924 |
18° | 0.309 |
19° | 0.3256 |
20° | 0.342 |
21° | 0.3584 |
22° | 0.3746 |
23° | 0.3907 |
24° | 0.4067 |
25° | 0.4226 |
26° | 0.4384 |
27° | 0.454 |
28° | 0.4695 |
29° | 0.4848 |
30° | 0.5 |
31° | 0.515 |
32° | 0.5299 |
33° | 0.5446 |
34° | 0.5592 |
35° | 0.5736 |
36° | 0.5878 |
37° | 0.6018 |
38° | 0.6157 |
39° | 0.6293 |
40° | 0.6428 |
41° | 0.6561 |
42° | 0.6691 |
43° | 0.682 |
44° | 0.6947 |
45° | 0.7071 |
46° | 0.7193 |
47° | 0.7314 |
48° | 0.7431 |
49° | 0.7547 |
50° | 0.766 |
51° | 0.7771 |
52° | 0.788 |
53° | 0.7986 |
54° | 0.809 |
55° | 0.8192 |
56° | 0.829 |
57° | 0.8387 |
58° | 0.848 |
59° | 0.8572 |
60° | 0.866 |
61° | 0.8746 |
62° | 0.8829 |
63° | 0.891 |
64° | 0.8988 |
65° | 0.9063 |
66° | 0.9135 |
67° | 0.9205 |
68° | 0.9272 |
69° | 0.9336 |
70° | 0.9397 |
71° | 0.9455 |
72° | 0.9511 |
73° | 0.9563 |
74° | 0.9613 |
75° | 0.9659 |
76° | 0.9703 |
77° | 0.9744 |
78° | 0.9781 |
79° | 0.9816 |
80° | 0.9848 |
81° | 0.9877 |
82° | 0.9903 |
83° | 0.9925 |
84° | 0.9945 |
85° | 0.9962 |
86° | 0.9976 |
87° | 0.9986 |
88° | 0.9994 |
89° | 0.9998 |
90° | 1 |
Угол в градусах | Sin (Синус) |
---|---|
91° | 0.9998 |
92° | 0.9994 |
93° | 0.9986 |
94° | 0.9976 |
95° | 0.9962 |
96° | 0.9945 |
97° | 0.9925 |
98° | 0.9903 |
99° | 0.9877 |
100° | 0.9848 |
101° | 0.9816 |
102° | 0.9781 |
103° | 0.9744 |
104° | 0.9703 |
105° | 0.9659 |
106° | 0.9613 |
107° | 0.9563 |
108° | 0.9511 |
109° | 0.9455 |
110° | 0.9397 |
111° | 0.9336 |
112° | 0.9272 |
113° | 0.9205 |
114° | 0.9135 |
115° | 0.9063 |
116° | 0.8988 |
117° | 0.891 |
118° | 0.8829 |
119° | 0.8746 |
120° | 0.866 |
121° | 0.8572 |
122° | 0.848 |
123° | 0.8387 |
124° | 0.829 |
125° | 0.8192 |
126° | 0.809 |
127° | 0.7986 |
128° | 0.788 |
129° | 0.7771 |
130° | 0.766 |
131° | 0.7547 |
132° | 0.7431 |
133° | 0.7314 |
134° | 0.7193 |
135° | 0.7071 |
136° | 0.6947 |
137° | 0.682 |
138° | 0.6691 |
139° | 0.6561 |
140° | 0.6428 |
141° | 0.6293 |
142° | 0.6157 |
143° | 0.6018 |
144° | 0.5878 |
145° | 0.5736 |
146° | 0.5592 |
147° | 0.5446 |
148° | 0.5299 |
149° | 0.515 |
150° | 0.5 |
151° | 0.4848 |
152° | 0.4695 |
153° | 0.454 |
154° | 0.4384 |
155° | 0.4226 |
156° | 0.4067 |
157° | 0.3907 |
158° | 0.3746 |
159° | 0.3584 |
160° | 0.342 |
161° | 0.3256 |
162° | 0.309 |
163° | 0.2924 |
164° | 0.2756 |
165° | 0.2588 |
166° | 0.2419 |
167° | 0.225 |
168° | 0.2079 |
169° | 0.1908 |
170° | 0.1736 |
171° | 0.1564 |
172° | 0.1392 |
173° | 0.1219 |
174° | 0.1045 |
175° | 0.0872 |
176° | 0.0698 |
177° | 0.0523 |
178° | 0.0349 |
179° | 0.0175 |
180° | 0 |
Угол | Sin (Синус) |
---|---|
181° | -0.0175 |
182° | -0.0349 |
183° | -0.0523 |
184° | -0.0698 |
185° | -0.0872 |
186° | -0.1045 |
187° | -0.1219 |
188° | -0.1392 |
189° | -0.1564 |
190° | -0.1736 |
191° | -0.1908 |
192° | -0.2079 |
193° | -0.225 |
194° | -0.2419 |
195° | -0.2588 |
196° | -0.2756 |
197° | -0.2924 |
198° | -0.309 |
199° | -0.3256 |
200° | -0.342 |
201° | -0.3584 |
202° | -0.3746 |
203° | -0.3907 |
204° | -0.4067 |
205° | -0.4226 |
206° | -0.4384 |
207° | -0.454 |
208° | -0.4695 |
209° | -0.4848 |
210° | -0.5 |
211° | -0.515 |
212° | -0.5299 |
213° | -0.5446 |
214° | -0.5592 |
215° | -0.5736 |
216° | -0.5878 |
217° | -0.6018 |
218° | -0.6157 |
219° | -0.6293 |
220° | -0.6428 |
221° | -0.6561 |
222° | -0.6691 |
223° | -0.682 |
224° | -0.6947 |
225° | -0.7071 |
226° | -0.7193 |
227° | -0.7314 |
228° | -0.7431 |
229° | -0.7547 |
230° | -0.766 |
231° | -0.7771 |
232° | -0.788 |
233° | -0.7986 |
234° | -0.809 |
235° | -0.8192 |
236° | -0.829 |
237° | -0.8387 |
238° | -0.848 |
239° | -0.8572 |
240° | -0.866 |
241° | -0.8746 |
242° | -0.8829 |
243° | -0.891 |
244° | -0.8988 |
245° | -0.9063 |
246° | -0.9135 |
247° | -0.9205 |
248° | -0.9272 |
249° | -0.9336 |
250° | -0.9397 |
251° | -0.9455 |
252° | -0.9511 |
253° | -0.9563 |
254° | -0.9613 |
255° | -0.9659 |
256° | -0.9703 |
257° | -0.9744 |
258° | -0.9781 |
259° | -0.9816 |
260° | -0.9848 |
261° | -0.9877 |
262° | -0.9903 |
263° | -0.9925 |
264° | -0.9945 |
265° | -0.9962 |
266° | -0.9976 |
267° | -0.9986 |
268° | -0.9994 |
269° | -0.9998 |
270° | -1 |
Угол | Sin (Синус) |
---|---|
271° | -0.9998 |
272° | -0.9994 |
273° | -0.9986 |
274° | -0.9976 |
275° | -0.9962 |
276° | -0.9945 |
277° | -0.9925 |
278° | -0.9903 |
279° | -0.9877 |
280° | -0.9848 |
281° | -0.9816 |
282° | -0.9781 |
283° | -0.9744 |
284° | -0.9703 |
285° | -0.9659 |
286° | -0.9613 |
287° | -0.9563 |
288° | -0.9511 |
289° | -0.9455 |
290° | -0.9397 |
291° | -0.9336 |
292° | -0.9272 |
293° | -0.9205 |
294° | -0.9135 |
295° | -0.9063 |
296° | -0.8988 |
297° | -0.891 |
298° | -0.8829 |
299° | -0.8746 |
300° | -0.866 |
301° | -0.8572 |
302° | -0.848 |
303° | -0.8387 |
304° | -0.829 |
305° | -0.8192 |
306° | -0.809 |
307° | -0.7986 |
308° | -0.788 |
309° | -0.7771 |
310° | -0.766 |
311° | -0.7547 |
312° | -0.7431 |
313° | -0.7314 |
314° | -0.7193 |
315° | -0.7071 |
316° | -0.6947 |
317° | -0.682 |
318° | -0.6691 |
319° | -0.6561 |
320° | -0.6428 |
321° | -0.6293 |
322° | -0.6157 |
323° | -0.6018 |
324° | -0.5878 |
325° | -0.5736 |
326° | -0.5592 |
327° | -0.5446 |
328° | -0.5299 |
329° | -0.515 |
330° | -0.5 |
331° | -0.4848 |
332° | -0.4695 |
333° | -0.454 |
334° | -0.4384 |
335° | -0.4226 |
336° | -0.4067 |
337° | -0.3907 |
338° | -0.3746 |
339° | -0.3584 |
340° | -0.342 |
341° | -0.3256 |
342° | -0.309 |
343° | -0.2924 |
344° | -0.2756 |
345° | -0.2588 |
346° | -0.2419 |
347° | -0.225 |
348° | -0.2079 |
349° | -0.1908 |
350° | -0.1736 |
351° | -0.1564 |
352° | -0.1392 |
353° | -0.1219 |
354° | -0.1045 |
355° | -0.0872 |
356° | -0.0698 |
357° | -0.0523 |
358° | -0.0349 |
359° | -0.0175 |
360° | 0 |
Таблица синусов особенно нужна, когда у вас под рукой нет супер навороченного инженерного калькулятора с маленькой спасительной кнопкой с надписью «sin». В таком случае, чтобы узнать, чему же равняется синус определенного заданного угла, просто найдите информацию о интересующем градусе.
Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите полностью всё таблицу, на выделенном фоне нажмите уже правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».
Как пользоваться таблицей? Всё гораздо проще, чем Вы думаете, ищем в левой вертикальной колонке, соответствующий градус, и напротив него и будет указано нужное значение синуса для данного нужного нам угла.
Чему равен синус 45? …
— А вот собственно и сам ответ на поставленную задачку.sin 45 = 0.7071
Тригонометрия простыми словами
Официальное объяснение тригонометрии вы можете почитать в учебниках или на других интернет сайтах, а в этой статье мы хотим объяснить суть тригонометрии «на пальцах».
Для удобства работы с тригонометрическими функциями был придуман тригонометрический круг, который представляет собой окружность с единичным радиусом (r = 1).
Тогда проекции радиуса на оси X и Y (OB и OA’) равны катетам построенного треугольника ОАВ, которые в свою очередь равны значениям синуса и косинуса данного угла.
Тангенс и котангенс получаются соответстсвенно из треугольников OCD и OC’D’, построенных подобно исходному треугольнику OAB.
Для упрощения обучения тригонометрическим функциям в школе используют только некоторые удобные углы в 0°, 30°, 45°, 60° и 90°.
Значения тригонометрических функций повторяются каждые 90° и в некоторых случаях меняя знак на отрицательный.
Достаточно запомнить значения некоторых важных углов и понять принцип повтора значений для бОльших углов.
Значения тригонометрических функций
для первой четверти круга (0° – 90°)
Принцип повтора знаков тригонометрических функций
Угол может быть как положительный, так и отрицательный. Отрицательный угол считается угол, откладываемый в противоположную сторону.
В виду того, что полная окружность составляет 360°, значения тригонометрических функций углов, описывающих одинаковое положение радиуса, РАВНЫ.
Для лучшего понимания и запоминания значений тригонометрических функций воспользуйтесь динамическим макетом тригонометрического круга ниже. Нажимая кнопки «+» и «–» значения угла будут увеличиваться или уменьшаться соответственно.
Тригонометрический круг
Углы в радианах
Чтобы закрепить свои знания и проверить себя, воспользуйтесь онлайн-тренажером для запоминания значений тригонометрических функций.
Синус, косинус, тангенс и котангенс (ЕГЭ 2022)
Понятия синуса, косинуса, тангенса, котангенса неразрывно связаны с понятием угла.
Не так страшен черт, как его малюют!
Чтобы хорошо разобраться в этих понятиях (нет, не в чёрте! в тригонометрии 🙂 ), начнём с самого начала.
Синус, косинус, тангенс, котангенс — коротко о главном.
Синус угла — это отношение противолежащего (дальнего) катета к гипотенузе
Косинус угла — это отношение прилежащего (близкого) катета к гипотенузе
Тангенс угла — это отношение противолежащего (дальнего) катета к прилежащему (близкому)
Котангенс угла — это отношение прилежащего (близкого) катета к противолежащему (дальнему).
Понятие угла: радиан, градус
Давай для начала разберёмся в понятии угла.
Посмотрим на рисунок.
Вектор \( AB\) «повернулся» относительно точки \( A\) на некую величину. Так вот мерой этого поворота относительно начального положения и будет выступать угол \( \alpha \).
Что же ещё необходимо знать о понятии угла? Ну, конечно же, единицы измерения угла!
Угол, как в геометрии, так и в тригонометрии, может измеряться в градусах и радианах.
Углом в \( 1<>^\circ \) (один градус) называют центральный угол в окружности, опирающийся на круговую дугу, равную \( \frac<1><360>\) части окружности.
Таким образом, вся окружность состоит из \( 360\) «кусочков» круговых дуг. То есть угол, описываемый окружностью, равен \( 360<>^\circ \).
То есть на рисунке выше изображён угол \( \beta \), равный \( 50<>^\circ \), то есть этот угол опирается на круговую дугу размером \( \frac<50><360>\) длины окружности.
Углом в \( 1\) радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности.
Ну что, разобрался? Если нет, то давай разбираться по рисунку.
Итак, на рисунке изображён угол \( \gamma \), равный \( 1\) радиану.
То есть этот угол опирается на круговую дугу, длина которой равна радиусу окружности (длина \( AB\) равна длине \( BB’\) или радиус \( r\) равен длине дуги \( l\)).
Таким образом, длина дуги вычисляется по формуле:
\( l=\theta \cdot r\), где \( \theta \) — центральный угол в радианах.
Ну что, можешь, зная это, ответить, сколько радиан содержит угол, описываемый окружностью?
Да, для этого надо вспомнить формулу длины окружности. Вот она:
Ну вот, теперь соотнесём эти две формулы и получим, что угол, описываемый окружностью равен \( 2\pi \).
То есть, соотнеся величину в градусах и радианах, получаем, что \( 2\pi =360<>^\circ \).
Соответственно, \( \pi =180<>^\circ \).
Как можно заметить, в отличие от «градусов», слово «радиан» опускается, так как единица измерения обычно ясна из контекста.
А сколько радиан составляют \( 60<>^\circ \)?
Уловил? Тогда вперёд закреплять:
Тогда смотри ответы:
Cинус, косинус, тангенс, котангенс угла в прямоугольном треугольнике
Итак, с понятием угла разобрались. А что же всё-таки такое синус, косинус, тангенс, котангенс угла?
Давай разбираться. Для этого нам поможет прямоугольный треугольник.
Как называются стороны прямоугольного треугольника?
Всё верно, гипотенуза и катеты.
Гипотенуза — это сторона, которая лежит напротив прямого угла (в нашем примере это сторона \( AC\))
Катеты – это две оставшиеся стороны \( AB\) и \( BC\) (те, что прилегают к прямому углу).
Причём, если рассматривать катеты относительно угла \( \angle BAC\), то катет \( AB\) – это прилежащий катет, а катет \( BC\) — противолежащий.
Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?
Синус угла – это отношение противолежащего (дальнего) катета к гипотенузе.
В нашем треугольнике \( \sin \beta =\frac
Косинус угла – это отношение прилежащего (близкого) катета к гипотенузе.
В нашем треугольнике \( \cos \beta =\frac
Тангенс угла – это отношение противолежащего (дальнего) катета к прилежащему (близкому).
В нашем треугольнике \( tg\beta =\frac
Котангенс угла – это отношение прилежащего (близкого) катета к противолежащему (дальнему).
В нашем треугольнике \( ctg\beta =\frac
Эти определения необходимо запомнить!
Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе.
А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:
В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле).
Тогда убедись, посмотрев на рисунок:
Рассмотрим, к примеру, косинус угла \( \beta \).
По определению, из треугольника \( ABC\): \( \cos \beta =\frac
Но ведь мы можем вычислить косинус угла \( \beta \) и из треугольника \( AHI\): \( \cos \beta =\frac
Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.
Если разобрался в определениях, то вперёд закреплять их!
Тогда пробуй сам: посчитай то же самое для угла \( \beta \).
Ответы: \( \sin \ \beta =0,6;\ \cos \ \beta =0,8;\ tg\ \beta =0,75;\ ctg\ \beta =\frac<4><3>\).
Единичная (тригонометрическая) окружность
Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным \( 1\).
Такая окружность называется единичной. Еще ее называют тригонометрической. Это одно и тоже.
Эта окружность — универсальная шпаргалка для решения уравнений и даже неравенств, если уметь ей пользоваться!
У нас есть целая статья, посвященная ей, которая так и называется «Тригонометрическая (единичная) окружность».
Здесь мы тоже ее разберем довольно подробно.
Как можно заметить, данная окружность построена в декартовой системе координат.
Радиус окружности равен единице.
При этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси \( x\) (в нашем примере, это радиус \( AB\)).
Каждой точке окружности соответствуют два числа: координата по оси \( x\) и координата по оси \( y\).
А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме?
Для этого надо вспомнить про рассмотренный прямоугольный треугольник.
На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника.
Рассмотрим треугольник \( ACG\). Он прямоугольный, так как \( CG\) является перпендикуляром к оси \( x\).
Чему равен \( \cos \ \alpha \) из треугольника \( ACG\)?
Всё верно \( \cos \ \alpha =\frac
Кроме того, нам ведь известно, что \( AC\) – это радиус единичной окружности, а значит, \( AC=1\).
Подставим это значение в нашу формулу для косинуса. Вот что получается:
А чему равен \( \sin \ \alpha \) из треугольника \( ACG\)?
Ну конечно, \( \sin \alpha =\frac
Подставим значение радиуса \( AC\) в эту формулу и получим:
Так, а можешь сказать, какие координаты имеет точка \( C\), принадлежащая окружности? Ну что, никак?
А если сообразить, что \( \cos \ \alpha \) и \( \sin \alpha \) — это просто числа?
Какой координате соответствует \( \cos \alpha \)?
Ну, конечно, координате \( x\)!
А какой координате соответствует \( \sin \alpha \)?
Всё верно, координате \( y\)!
Таким образом, точка \( C(x;y)=C(\cos \alpha ;\sin \alpha )\).
А чему тогда равны \( tg \alpha \) и \( ctg \alpha \)?
Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что \( tg \alpha =\frac<\sin \alpha ><\cos \alpha >=\frac
А что, если угол будет больше \( 90<>^\circ =\frac<\pi ><2>\)?
Вот, к примеру, как на этом рисунке:
Что же изменилось в данном примере?
Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику.
Всё верно, придерживаемся соответствующих определений тригонометрических функций:
Ну вот, как видишь, значение синуса угла всё так же соответствует координате \( y\); значение косинуса угла – координате \( x\); а значения тангенса и котангенса соответствующим соотношениям.
Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.
Уже упоминалось, что начальное положение радиус-вектора – вдоль положительного направления оси \( x\).
До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке?
Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным.
Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы, а при вращении по часовой стрелке – отрицательные.
Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет \( 360<>^\circ \) или \( 2\pi \).
В первом случае, \( 390<>^\circ =360<>^\circ +30<>^\circ \), таким образом, радиус-вектор совершит один полный оборот и остановится в положении \( 30<>^\circ \) или \( \frac<\pi ><6>\).
Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на \( 360<>^\circ \cdot m\) или \( 2\pi \cdot m\) (где \( m\) – любое целое число), соответствуют одному и тому же положению радиус-вектора.
Ниже на рисунке изображён угол \( \beta =-60<>^\circ \).
Этот список можно продолжить до бесконечности.
Все эти углы можно записать общей формулой \( \beta +360<>^\circ \cdot m\) или \( \beta +2\pi \cdot m\) (где \( m\) – любое целое число)
Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:
Вот тебе в помощь единичная окружность:
Возникли трудности? Тогда давай разбираться.
Отсюда мы определяем координаты точек, соответствующих определённым мерам угла.
Ну что же, начнём по порядку: углу в \( 90<>^\circ =\frac<\pi ><2>\) соответствует точка с координатами \( \left( 0;1 \right)\), следовательно:
\( \text
Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.
Ответы:
\( \displaystyle \sin \ 180<>^\circ =\sin \ \pi =0\) \( \displaystyle \cos \ 180<>^\circ =\cos \ \pi =-1\) \( \text
\( \text
\( \sin \ 270<>^\circ =-1\) \( \cos \ 270<>^\circ =0\)
\( \text
\( \text
\( \text
\( \sin \ 450<>^\circ =\sin \ \left( 360<>^\circ +90<>^\circ \right)=\sin \ 90<>^\circ =1\) \( \cos \ 450<>^\circ =\cos \ \left( 360<>^\circ +90<>^\circ \right)=\cos \ 90<>^\circ =0\)
\( \text
\( \text
Таким образом, мы можем составить следующую табличку:
Нет необходимости помнить все эти значения!
Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:
А вот значения тригонометрических функций углов в \( 30<>^\circ =\frac<\pi ><6>,\ 45<>^\circ =\frac<\pi ><4>\) и \( 30<>^\circ =\frac<\pi ><6>,\ 45<>^\circ =\frac<\pi ><4>\), приведённых ниже в таблице, необходимо запомнить:
Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений: