Что называют ребрами многогранника

Ребро (геометрия)

Связанные понятия

Правильные четырёхмерные многогранники являются четырёхмерными аналогами правильных многогранников в трёхмерном пространстве и правильных многоугольников на плоскости.

Упоминания в литературе

Связанные понятия (продолжение)

Пра́вильный двадцатичетырёхъяче́йник, или просто двадцатичетырёхъяче́йник, или икоситетрахор (от др.-греч. εἴκοσι — «двадцать», τέτταρες — «четыре» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве.

Пра́вильный шестнадцатияче́йник, или просто шестнадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гексадекахор (от др.-греч. ἕξ — «шесть», δέκα — «десять» и χώρος — «место, пространство»), четырёхмерный гиперокта́эдр (поскольку является аналогом трёхмерного октаэдра), четырёхмерный кокуб (поскольку двойственен четырёхмерному гиперкубу), четырёхмерный ортоплекс.

В геометрии политоп (многогранник, многоугольник или замощение, например) изогонален или вершинно транзитивен, если, грубо говоря, все его вершины эквивалентны. Отсюда следует, что все вершины окружены одним и тем же видом граней в том же самом (или обратном) порядке и с теми же самыми углами между соответствующими гранями.

Если дано топологическое пространство и группа действий на нём, образы отдельной точки под действием группы действий образуют орбиты действий. Фундаментальная область — это подмножество пространства, которое содержит в точности по одной точке из каждой орбиты. Она даёт геометрическую реализацию абстрактного множества представителей орбит.

Многогранник размерности 3 и выше называется изоэдральным или гране транзитивным, если все его грани одинаковы. Точнее сказать, все грани должны быть не просто конгруэнтны, а должны быть транзитивны, то есть должны прилежать в одной и той же орбите симметрии. Другими словами, для любых граней A и B должна существовать симметрия всего тела (состоящая из вращений и отражений), которая отображает A в B. По этой причине выпуклые изоэдральные многогранники имеют формы правильных игральных костей.

В геометрии фигуру называют хиральной (и говорят, что она обладает хиральностью), если она не совпадает со своим зеркальным отображением, точнее, не может быть совмещена с ним только вращениями и параллельными переносами. Хиральная фигура и её зеркальный образ называют энантиоморфами. Слово хиральность происходит от др.-греч. χειρ (хеир) — «рука». Это самый известный хиральный объект. Слово энантиоморф происходит от др.-греч. εναντιος (энантиос) — «противоположный», и μορφη (морфе) — «форма». Нехиральный.

Полуправильные многогранники — в общем случае это различные выпуклые многогранники, которые, не являясь правильными, имеют некоторые их признаки, например: все грани равны, или все грани являются правильными многоугольниками, или имеются определённые пространственные симметрии. Определение может варьироваться и включать различные типы многогранников, но в первую очередь сюда относятся архимедовы тела.

Пра́вильный пятияче́йник, или просто пятияче́йник, или пентахор (от др.-греч. πέντε — «пять» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве: правильный четырёхмерный симплекс.

Источник

math4school.ru

Что называют ребрами многогранника

Что называют ребрами многогранника

Что называют ребрами многогранника

Что называют ребрами многогранника

Что называют ребрами многогранника

Что называют ребрами многогранника

Что называют ребрами многогранника

Что называют ребрами многогранника

Многогранники

Основные понятия

Что называют ребрами многогранника

Некоторые пространственные фигуры, изучаемые в стереометрии, называют телами или геометрическими телами. Наглядно тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью.

Многогранником называется геометрическое тело, поверхность которого состоит из конечного числа плоских многоугольников.

Что называют ребрами многогранника

Выпуклым называется многогранник, если он расположен по одну сторону плоскости, проведённой через любой многоугольник, образующий поверхность данного многогранника.

Многоугольники, составляющие поверхность многогранника, называются его гранями; стороны многоугольников – рёбрами; вершины – вершинами многогранника:

Теорема Эйлера для многогранников:

Если V — число вершин выпуклого многогранника, R — число его ребер и G — число граней, то верно равенство:

Призма

Что называют ребрами многогранника

Призмой называется многогранник, состоящий из двух плоских многоугольников, которые лежат в разных плоскостях и совмещаются параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников. Многоугольники, о которых шла речь, называются основаниями призмы, а отрезки, соединяющие их соответствующие вершины – боковыми рёбрами призмы.

Основания призмы равны и лежат в параллельных плоскостях.

Боковые рёбра призмы равны и параллельны.

Поверхность призмы состоит из двух оснований и боковой поверхности.

Боковая поверхность любой призмы состоит из параллелограммов, у каждого из которых две стороны являются соответствующими сторонами оснований, а две другие – соседними боковыми рёбрами.

Высотой призмы называется любой из перпендикуляров, проведённых из точки одного основания к плоскости другого основания призмы.

A1О – высота призмы;

α – угол наклона бокового ребра к основанию призмы.

Что называют ребрами многогранника

Призма называется прямой, если её рёбра перпендикулярны плоскостям оснований. В противном случае призма называется наклонной.

Боковые грани прямой призмы – прямоугольники.

Боковое ребро прямой призмы является её высотой.

Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы:

Прямая призма называется правильной, если её основания являются правильными многоугольниками.

Что называют ребрами многогранника

Сечения призмы плоскостями, параллельными боковым рёбрам,являются параллелограммами. В частности, параллелограммами являются диагональные сечения. Это сечения плоскостями, проходящими, через два боковых ребра, не принадлежащих одной грани:

ВВ1D1 D – диагональное сечение.

Если в произвольной наклонной призме провести сечение, перпендикулярное боковым рёбрам и пересекающее все боковые рёбра, и площадь этого сечения обозначить S, а периметр – Р, тогда:

В любой призме площадь полной поверхности считается как сумма площади боковой поверхности и удвоенной площади основания:

Параллелепипед

Что называют ребрами многогранника

Призма, в основании которой лежит параллелограмм, называется параллелепипедом.

У параллелепипеда все грани – параллелограммы.

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.

У параллелепипеда противолежащие грани параллельны и равны.

Диагональю параллелепипеда, как и многогранника вообще, называется отрезок, соединяющий вершины параллелепипеда, не лежащие в одной его грани.

Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Точка пересечения диагоналей параллелепипеда является его центром симметрии.

Что называют ребрами многогранника

Прямоугольным параллелепипедом называется такой прямой параллелепипед, в основании которого лежит прямоугольник.

Все грани прямоугольного параллелепипеда являются прямоугольниками.

Длины рёбер прямоугольного параллелепипеда, выходящих из одной вершины, называются его измерениями или линейными размерами.

У прямоугольного параллелепипеда три измерения.

В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трёх его измерений:

В прямоугольном параллелепипеде верно:

Что называют ребрами многогранника Что называют ребрами многогранника

В прямоугольном параллелепипеде, как и во всяком параллелепипеде, есть центр симметрии – точка пересечения его диагоналей. У него есть также три плоскости симметрии, проходящие через центр симметрии параллельно парам противолежащих граней. На первом рисунке, приведённом выше, показана одна из таких плоскостей. Она проходит через середины четырех параллельных ребер параллелепипеда.

Если у параллелепипеда все линейные размеры разные, то у него нет других плоскостей симметрии, кроме трёх названных.

Если же у параллелепипеда два линейных размера равны, то есть он является правильной четырёхугольной призмой, то у него есть еще две плоскости симметрии. Это плоскости диагональных сечений, показанные на втором рисунке.

Что называют ребрами многогранника

Прямоугольный параллелепипед, у которого все три измерения равны, называется кубом.

Диагональ куба в квадратный корень из трёх раз больше его стороны:

Что называют ребрами многогранника

Что называют ребрами многогранника

Что называют ребрами многогранника

Четыре сечения куба являются правильными шестиугольниками (одно из них показано на рисунке) – эти сечения проходят через центр куба перпендикулярно четырём его диагоналям.

У куба девять плоскостей симметрии:

Пирамида

Что называют ребрами многогранника

Пирамидой (например, SABCDE ) называется многогранник, который состоит из плоского многоугольника (пятиугольник ABCDE ) – основания пирамиды, точки ( S ), не лежащей в плоскости основания,– вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания.

Поверхность пирамиды состоит из основания (пятиугольник ABCDE ) и боковых граней. Каждая боковая грань – треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной – сторона основания пирамиды:

Боковой поверхностью пирамиды называется сумма площадей ее боковых граней.

Высотой пирамиды ( SО ) называется перпендикуляр, проведённый из вершины пирамиды к плоскости основания.

α – угол наклона бокового ребра SA пирамиды к плоскости её основания;

β – угол наклона боковой грани ( SED ) пирамиды к плоскости её основания.

Основание высоты пирамиды является центром окружности, описанной около основания пирамиды, тогда и только тогда, когда выполняется одно из условий:

Основание высоты пирамиды является центром окружности, вписанной в основание пирамиды, тогда и только тогда, когда выполняется одно из условий:

Объём пирамиды равен трети произведения площади основания на высоту пирамиды:

Площадь полной поверхности любой пирамиды равна сумме площадей боковой поверхности и основания:

Сечения пирамиды плоскостями, проходящими через ее вершину, представляют собой треугольники. В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды.

Что называют ребрами многогранника

Что называют ребрами многогранника

Плоскость, которая пересекает пирамиду и параллельна её основанию, делит её на две части:

многогранник, называемый усеченной пирамидой ( AВСA1В1С1 ).

Основания усеченной пирамиды представляют собой подобные многоугольники, боковые грани – трапеции.

Высота усеченной пирамиды ( ОО1 ) – это расстояние между плоскостями её оснований.

Если S1 и S2 – площади оснований усечённой пирамиды и h – её высота, то для объёма усеченной пирамиды верно:

Что называют ребрами многогранника

Что называют ребрами многогранника

Пирамида (например, SABCD ) называется правильной, если ее основанием является правильный многоугольник ( ABCD – квадрат ), а основание высоты совпадает с центром этого многоугольника ( О – центр описанной и вписанной окружностей основания).

Осью правильной пирамиды называется прямая, содержащая ее высоту.

Боковые ребра правильной пирамиды равны.

Боковые грани правильной пирамиды – равные равнобедренные треугольники.

Высота боковой грани правильной пирамиды ( SL ), проведенная из ее вершины к стороне основания, называется апофемой.

Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему:

Что называют ребрами многогранника

Усеченная пирамида (например, АВСDA1В1С1D1 ), которая получается из правильной пирамиды, также называется правильной.

Правильные многогранники

Что называют ребрами многогранника Что называют ребрами многогранника Что называют ребрами многогранника

Тетраэдр Куб Октаэдр

Что называют ребрами многогранника Что называют ребрами многогранникаДодекаэдр Икосаэдр

Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер.

Существует пять типов правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.

У правильного тетраэдра грани – правильные треугольники; в каждой вершине сходится по три ребра. Тетраэдр представляет собой треугольную пирамиду, у которой все ребра равны.

У куба (правильный гексаэдр) все грани – квадраты; в каждой вершине сходится по три ребра. Куб представляет собой прямоугольный параллелепипед с равными ребрами.

У октаэдра грани – правильные треугольники, но в отличие от тетраэдра в каждой его вершине сходится по четыре ребра.

У додекаэдра грани – правильные пятиугольники. В каждой вершине сходится по три ребра.

У икосаэдра грани – правильные треугольники, но в отличие от тетраэдра и октаэдра в каждой вершине сходится по пять ребер.

Источник

Что такое многогранник? Примеры

Примеры многогранников:

Что называют ребрами многогранника

1) каждая сторона одного является одновременно стороной другого (но только одного), называемого смежным с первым (по этой стороне);

Многогранник называется выпуклым, если он лежит по одну сторону от плоскости любой его грани.

Из этого определения следует, что все грани выпуклого многогранника являются плоскими многоугольниками. Поверхность выпуклого многогранника состоит из граней, которые лежат в разных плоскостях. При этом ребрами многогранника являются стороны многоугольников, вершинами многогранника – вершины граней, плоскими углами многогранника – углы многоугольников – граней.

Выпуклый многогранник, все вершины которого лежат в двух параллельных плоскостях, называется призматоидом. Призма, пирамида и усеченная пирамида – частные случаи призматоида. Все боковые грани призматоида являются треугольниками или четырехугольниками, причем четырехугольные грани – это трапеции или параллелограммы.

Популярное

Если ты не любишь математику, опасайся хэллоуина! Злые силы придут за тобой в хэллоуин! Создай двух стражей, которые будут оберегать тебя от злых сил! Ну, или.

Многогранники могут стать украшением вашего дома, создав изюминку в интерьере.

Знакомые каждому с детства коробочки для Биг-Мака и картошки, стаканчик для Кока-Колы так же делают из бумажных разверток.

Основатели города Мирный, находящегося в Архангельской области разместили на флаге и гербе своего города многогранник – «Большой додекаэдр».

Раздел геометрии, в котором изучаются фигуры в пространстве именуется стереометрия. Происхождение слова стереометрия относится к Древней Греции – от слов «stereos» —.

Источник

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок № 13. Многогранники

Перечень вопросов, рассматриваемых в теме:

Многогранник – геометрическое тело, ограниченное конечным числом плоских многоугольников.

Грани многогранника – многоугольники, ограничивающие многогранники.

Ребра многогранника – стороны граней многогранника.

Вершины многогранника – концы ребер многогранника (вершины граней многогранника).

Диагональ многогранника – отрезок, соединяющий две вершины, не принадлежащие одной грани.

Выпуклый многогранник – многогранник, расположенный по одну сторону от плоскости его любой грани.

Невыпуклый многогранник – многогранник, у которого найдется по крайней мере одна грань такая, что плоскость, проведенная через эту грань, делит данный многогранник на две или более частей.

Атанасян Л. С., В. Ф. Бутузов, С. Б. Кадомцев и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. Для общеобразоват. организаций: базовый и углубл. уровния. – М.: Просвещение, 2014. – 255 с. (стр. 58, стр. 60 – 61)

Долбилин Н. П. Жемчужины теории многогранников М. : – МЦНМО, 2000. – 40 с.: ил. (стр. 27 – 31)

Открытые электронные ресурсы:

Долбилин Н. П. Три теоремы о выпуклых многогранниках. Журнал Квант.

Теоретический материал для самостоятельного изучения

К определению понятия многогранника существует два подхода. Проведем аналогию с понятием многоугольника. Напомним, что в планиметрии под многоугольником мы понимали замкнутую линию без самопересечений, составленную из отрезков (рис. 1а). Также многоугольник можно рассматривать как часть плоскости, ограниченную этой линией, включая ее саму (рис. 1б). При изучении тел в пространстве мы будем пользоваться вторым толкованием понятия многоугольник. Так, любой многоугольник в пространстве есть плоская поверхность.

Б)Что называют ребрами многогранника

Что называют ребрами многогранника

Рисунок 1 – разные подходы к определению многоугольника

Вторая трактовка понятия определяет многогранник как геометрическое тело, ограниченное конечным числом плоских многоугольников.

В дальнейшем, мы будем использовать вторую трактовку понятия многогранника.

Уже известные вам тетраэдр и параллелепипед являются многогранниками. Потому что они являются геометрическими телами, ограниченные конечным числом плоских многоугольников. Еще один пример многогранника — октаэдр (рис. 2)

Что называют ребрами многогранника

Рисунок 2 – изображение октаэдра

Многоугольники, ограничивающие многогранник, называются его гранями. Так, у тетраэдра и октаэдра гранями являются треугольники. У тетраэдра 4 грани, отсюда и его название от греч. τετρά-εδρον — четырёхгранник. У октаэдра 8 граней, а от греческого οκτάεδρον от οκτώ «восемь» + έδρα «основание».

Стороны граней называются ребрами, а концы ребер — вершинами многогранника. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.

Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани. В остальных случаях многогранник называется невыпуклым (рис.3).

Что называют ребрами многогранника

Рисунок 3 – Виды многогранников

Сумма плоских углов при вершине выпуклого многогранника

Что называют ребрами многогранника

Рисунок 4 – сумма плоских углов пи вершине многогранника

Теорема Эйлера. Пусть В — число вершин выпуклого многогранника, Р — число его ребер, а Г — число его граней. Тогда верно равенство В – Р+Г= 2.

Теорема Эйлера играет огромную роль в математике. С ее помощью было доказано огромное количество теорем. Находясь в центре постоянного внимания со стороны математиков, теорема Эйлера получила далеко идущие обобщения. Более того, эта теорема открыла новую главу в математике, которая называется топологией.

Примеры и разбор решения заданий тренировочного модуля

Задание 1. Какие из перечисленных объектов НЕ могут быть элементами многогранника? Укажите номера в порядке возрастания.

Элементы многогранника, которые мы выделили: ребра, грани, вершины и диагонали. Ребро и диагональ многогранника – это отрезок. Грань многогранника – многоугольник, или иначе ограниченная часть плоскости. Вершины представляют собой точки. Таким образом, элементами многогранника не могут быть плоскость, луч, многогранник, прямая.

Задание 2. Сопоставьте геометрическим фигурам их вид

Что называют ребрами многогранникаЧто называют ребрами многогранникаЧто называют ребрами многогранника

Б) пространственная фигура

Вспомним, что изобразить пространственную фигуру можно разными способами. Например, с помощью теней или изображением невидимых линий пунктиром. Так, среди всех изображений плоской фигурой является фигура под номером 1.

Многогранник – геометрическое тело, ограниченное конечным числом плоских многоугольников. Только на изображении 2 фигура ограничена многоугольниками. Таким образом, получаем следующий ответ: 1-А, 2-В, 3-Б

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *