Что называют разность множеств а и в

Лекция 5. Вычитание множеств.

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

Лекция 4. Вычитание множеств, дополнение подмножества.

Определение. Разностью множеств А и В называется множество, содержащее те и только те элементы, которые принадлежат множеству А и не принадлежат множеству В.

Разность множеств А и В обозначают А \ В. Таким образом, по определению разности А \ В = < х | х ∈ А и х ∉ В>.

Если изобразить А и В при помощи кругов Эйлера-Венна, то разность данных множеств является заштрихованная область (рис. 5).

Определение. Пусть В является подмножеством множества А. В этом случае разность множеств А и В называют дополнением подмножества В до множества А и обозначают В’ А. Дополнение можно изобразить как показано на рис. 5. Если В – подмножество универсального множества U, то дополнение подмножества В до U обозначают В’.

Что называют разность множеств а и в

Например, если В – множество однозначных натуральных чисел, то В’– множество неоднозначных натуральных чисел, если С – множество равнобедренных треугольников, то С’ – множество треугольников, у которых все стороны имеют разную длину.

Разность множеств и дополнение к подмножеству обладают рядом свойств.

1) (А \ В) \ С = (А \ С) \ В.

2) (А ∪ В) \ С = (А \ С) ∪ (В \ С).

3) (А \ В) ∩ С = (А ∩С) \ (В ∩ С).

Задания для самостоятельной работы по теме:

1. Найдите разность множеств А и В, если

2. В каких случаях, выполняя упражнение 1, вы находили дополнение множества В до множества А?

3. Из каких чисел состоит дополнение:

а) множества натуральных чисел до множества целых;

б) множества целых чисел до множества рациональных;

в) множества рациональных чисел до множества действительных.

Источник

Пересечение, объединение и разность множеств

Пересечение множеств

Пересечением множеств A и B называют множество, содержащее те и только те элементы, которые входят одновременно как в множество A, так и в множество B:

Что называют разность множеств а и в

Объединение множеств

Объединением – множеств A и B называют множество, содержащее те и только те элементы, которые входят хотя бы в одно из множеств, A или B:

Что называют разность множеств а и в

Универсум и отрицание

Универсум (универсальное множество) – множество, включающее в себя все множества, рассматриваемые в данной задаче.

В литературе универсум обозначают U.

На диаграммах Эйлера универсум изображают как множество точек прямоугольника, в котором лежат остальные множества:

Что называют разность множеств а и в

При рассмотрении целочисленных задач, универсум – это множество целых чисел.

При построении двумерных графиков, универсум – это множество всех точек координатной плоскости.

При решении вероятностных задач, универсум – это множество всех возможных исходов цепочек событий.

Что называют разность множеств а и в

Свойства операций пересечения и объединения

$(A \cap B) \cap C = A \cap (B \cap C)$

$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

Взаимодействие с отрицанием, пустым множеством и универсумом

$A \cap \varnothing = \varnothing$

$A \cup \varnothing = A$

Разность множеств

Разностью двух множеств A и B называют множество, в которое входят все элементы из множества A, не принадлежащие множеству B:

На диаграммах Эйлера разности для пересекающихся множеств выглядят так:

Что называют разность множеств а и в

Что называют разность множеств а и в

Формулы включений и исключений

Рассмотрим два конечных пересекающихся множества A и B.

Что называют разность множеств а и в

Сумма n(A)и n(B) даст нам больше, чем общее количество, потому что мы два раза посчитаем то, что попадает в пересечение. Значит, если отнять одно пересечение, получится как раз то, что ищем:

$$n(A \cup B) = n(A)+ n(B)-n(A \cap B)$$

Выведем аналогичную формулу для трёх пересекающихся конечных множеств.

Что называют разность множеств а и в

Примеры

Пример 1. Найдите пересечение данных множеств:

Источник

Вычитание множеств. Дополнение подмножества

Что называют разность множеств а и в Что называют разность множеств а и в Что называют разность множеств а и в Что называют разность множеств а и в

Что называют разность множеств а и в

Что называют разность множеств а и в

Чтобы объяснить учащимся, что 5-3=2, часто используют такой прием. Берут 5 предметов, например, 5 кружков. После того как учащиеся убедятся при помощи счета, что кружков действительно 5, им предлагают 3 кружка убрать и сосчитать, сколько кружков осталось. Осталось 2, значит, 5-3=2.

В чем суть приема? Из данного множества, в котором а элементов, удаляют подмножество, содержащее b элементов. Тогда в оставшейся части множества а – b элементов.

Если заданы два множества, то можно не только найти их пересечение и объединение, но и вычесть из одного множества другое. Результат вычитания называют разностью и определяют следующим образом.

Определение.Разностью множеств А и В называется множество, содержащее все элементы, которые принадлежат множеству А и не принадлежат множеству В.

Разность множеств А и В обозначают А \ В. Тогда, по определению, имеем:

Что называют разность множеств а и вЕсли представить множества А и В при помощи кругов Эйлера, то разность А \ В изобразиться заштрихованной областью.

В школьном курсе математики чаще всего приходится выполнять вычитание множеств в случае, когда одно из них является подмножеством другого, при этом разность множеств А \ В называют дополнением множества В до множества А,и обозначают символом ВА.

Что называют разность множеств а и вПри помощи кругов Эйлера данная ситуация представляется на рисунке, где заштрихована та часть, которая осталась после удаления из множества А подмножества В. Эту часть называют дополнением множества В до множества А.

Определение.Пусть ВÌ А. Дополнением множества В до множества А называется множество, содержащее только те элементы множества А, которые не принадлежат множеству В.

Дополнение множества В до множества А ( при условии, что В Ì А) обозначают ВА = А \ В.

Операция при помощи которой находят дополнение подмножества, называется вычитанием.

Нахождение подмножества в конкретных случаях:

· Если элементы множества А и В пересечены, то, чтобы найти А \ В, достаточно перечислить элементы, принадлежащие А и не принадлежащие В.

· Если указаны характеристические свойства элементов множеств А и В (ВÌА), характеристическое свойство множества А \ В имеет вид «х ÎA и х ÏB».

Пример. А – множество четных чисел, В – множество чисел, кратных 4. Найти дополнение множества В до множества А. Определить, содержатся ли в этом дополнении числа 20 и 26.

Так как, все числа кратные 4, четные, то В Ì А. Если из множества А удалить все числа, кратные 4, то в нем останутся четные числа, не кратные 4. Значит, А \ В – множество четных чисел, не кратных 4. Характеристическое свойство элементов этого множества – «быть четным числом и не кратным 4».

Нетрудно видеть, что 20 Ï А \ В, поскольку 20 – четное число и кратно 4, а что 26 Î А \ В, т.к. 26 – четное число и не кратно 4.

Пример. Выясним теперь, из каких чисел состоит множество А \ В Ç С, если А – множество четных чисел, В – множество чисел, кратных 4, С – множество чисел, кратных 6.

В записи А \ В Ç С нет скобок. Возникает вопрос: какое действие выполнять первым? Условились считать, что операция пересечения множеств является более «сильной», чем вычитание.

Что называют разность множеств а и вПересечением множеств В и С состоит из чисел, кратных 4 и 6. Если удалить это пересечение из множества А, то в нем останутся четные числа, не кратные 4 и 6 (одновременно). При помощи кругов Эйлера данные множества А, В, и С можно изобразить так:

Замечание. Вычитание – это третья операция над множествами. Условимся считать, что пересечение – более «сильная» операция, чем вычитание. Поэтому порядок выполнения действий будет такой: сначала находят пересечение множеств, а затем вычитание.

Источник

Разность множеств. Свойства.

Симметричная разность множеств А и В ( пишется А \ В ) есть множество:

Что называют разность множеств а и в

Например, если А – множество точек первого круга на рисунке 16, а В – множество точек второго круга, то и разностью является множество точек заштрихованной серповидной фигуры. При этом точки дуги MN удаляются из фигуры.

В случае, когда В – часть множества А, называют дополнением к В в множестве А и обозначают (разумеется, одно и то же множество В может иметь разные дополнения в разных содержащих его множествах А) (рис. 17). Например, дополнением множества четных чисел в множестве всех целых чисел является множество нечетных чисел. Дополнением множества всех квадратов в множестве прямоугольников является множество всех прямоугольников с неравными сторонами. А дополнением того же множества квадратов в множестве всех ромбов является множество ромбов с неравными смежными углами.

17. Понятие функции одной переменной. Область определения и область значения функции. Основные свойства функции одной переменной. Понятие сложной функции. Обратная функция.

Термин «функция» появился в одной из рукописей Готфрида Вильгельма Лейбница в 1673 году. Однако, он употреблял этот термин в очень узком смысле. Речь шла об отрезках касательных к кривым, об их проекциях на оси координат и о «другого рода линиях, выполняющих для данной фигуры некоторую функцию».

В 1718 году Иоганн Бернулли впервые дает определение функции, свободное от геометрических представлений: «функцией переменной называется количество, образованное каким угодно способом из этой величины постоянных». Под «каким угодно способом» во времена Бернулли понимали арифметические операции, операции извлечения корней, тригонометрические и обратные тригонометрические, показательные и логарифмические «операции», а также их различные комбинации. Такие функции теперь называют элементарными.

Привычное для нас обозначение функции — f(x) — принадлежит Эйлеру.

Задать функцию означает установить правило (закон), с помощью которого по данным значениям независимой переменной следует находить соответствующие им значения функции:

Заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.

Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Если зависимость между x и y задана формулой, разрешенной относительно y, т.е. имеет вид y = f(x), то говорят, что функция от x задана в явном виде.

Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0, т.е. формула не разрешена относительно y, что говорят, что функция y = f(x) задана неявно.

Функция может быть определена разными формулами на разных участках области своего задания.

Аналитический способ является самым распространенным способом задания функций. Компактность, лаконичность, возможность вычисления значения функции при произвольном значении аргумента из области определения, возможность применения к данной функции аппарата математического анализа — основные преимущества аналитического способа задания функции. К недостаткам можно отнести отсутствие наглядности, которое компенсируется возможностью построения графика и необходимость выполнения иногда очень громоздких вычислений.

Состоит в том, что функциональная зависимость выражается словами.

Основными недостатками словесного способа задания функции являются невозможность вычисления значений функции при произвольном значении аргумента и отсутствие наглядности. Главное преимущество же заключается в возможности задания тех функций, которые не удается выразить аналитически.

Тогда в окрестности точки t0 определена сложная функция аргумента t

Аналогично определяется сложные функции любого числа переменных.

Обратная функция, функция, обращающая зависимость, выражаемую данной функцией. Так, если у = f (x) — данная функция, то переменная х, рассматриваемая как функция переменной у, х = j (y), является обратной по отношению к данной функции у = f (x). Например, О. ф. для у = ax + b (а¹0) является х = (у—b)/a, О. ф. для у = ех является х = ln у и т.д. Если х = j(y) есть О. ф. по отношению к у = f (x), то и у = f (x) есть О. ф. по отношению к х = j(y). Областью определения О. ф. является область значений данной функции, а областью значений О. ф.— область определения данной. Графики двух взаимно обратных функций у = f (x) и у = j (x) (где независимое переменное обозначено одной и той же буквой х), как, например, у = ax + b и у = (х—b)/a, у = ех и у = ln х, симметричны по отношению к биссектрисе у = х первого и третьего координатных углов. Функция, обратная по отношению к однозначной функии, может быть многозначной (ср., например, функции х2 и ). Для однозначности О. ф. необходимо и достаточно, чтобы данная функция у = f (x) принимала различные значения для различных значений аргумента. Для непрерывной функции последнее условие может выполняться только в том случае, если данная функция монотонна (имеются в виду функции действительного аргумента, принимающие действительные значения). О. ф. по отношению к непрерывной и монотонной функции однозначна, непрерывна и монотонна.

Если данная функция кусочно монотонна, то, разбивая область её определения на участки её монотонности, получают однозначные ветви О. ф. Так, одним из участков монотонности для sin х служит интервал — p/2 0), 1n (ex) = х (— ¥

Источник

Что называют разность множеств а и в

Объединение множеств X и Y — это множество, состоящее из всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств X или Y, т.е. принадлежат X или принадлежат Y.

Объединение X и Y обозначается через X∪Y

Формально x∈X∪Y ⇔ x∈X или x∈Y

Пример 3. Если X — множество точек левого круга и Y — множество точек правого круга, то

X∪Y — заштрихованная область, ограниченная обоими кругами.

представляет собой множество, состоящее из всех тех и только тех элементов, которые принадлежат хотя бы одному из множеств данной системы М.

Для объединенных множеств справедливы:

справедливость которых вытекает из того, что левая и правая части равенств состоят из одних и тех же элементов.

Очевидно, что X∪∅ = X. Отсюда можно видеть, что ∅ играет роль нуля в алгебре множеств.

2. Пересечение множеств

Пересечение множеств X и Y — это множество, состоящее из всех тех и только тех элементов, которые принадлежат как множеству X, так и множеству Y.

Пересечение множеств обозначается X∩Y.

Формально x∈X∩Y ⇔ x∈X и x∈Y

Пример 5. Если Х — множество точек левого круга, а Y — множество точек правого круга, то X∩Y представляет собой заштрихованную область, являющуюся общей частью обоих кругов.

Множества X и Y называются непересекающимися (дизъюнктными), если они не имеют общих элементов, то есть если X∩Y=∅.

Частный случай: кортеж длины 1 —

кортеж длины 0 — или ∧ — пустой кортеж.

Отличие кортежа и обыкновенного множества: в кортеже могут быть одинаковые элементы.

Упорядоченные множества, элементами которых являются вещественные числа, будем называть векторами или точками пространства (n-мерного).

Два вектора равны, если они имеют одинаковую длину и соответствующие координаты их равны.

Компонентами кортежа (вектора) могут быть также компоненты кортежи (векторы):

Пример. Слова в предложении,

Прямое произведение множеств

Прямым (декартовым) произведением множеств X и Y называется множество, состоящее из всех тех и только тех упорядоченных пар, первая компонента которых принадлежит множеству X, а вторая принадлежит множеству Y.

Пример 3. Пусть X и Y — отрезки вещественной оси. Прямое произведение X*Y изображается заштрихованным прямоугольником. См. рис. б).

Прямое произведение изменяется при изменении порядка сомножителей т.е.

Очевидно X*Y = ∅ ⇔ X = ∅ или Y = ∅.

Частным случаем прямого произведения является понятие степеней (декартовых) множества — прямое произведение одинаковых множеств

M s =M*M*. *M, M 1 =M, M 0 =∧.

Обычно R — множество вещественных чисел, тогда R 2 =R*R — вещественная плоскость и R 3 =R*R*R — трехмерное вещественное пространство.

Проекция множества.

Операция программирования множества тесно связана с операцией проектирования кортежа и может применяться лишь к таким множествам, элементами которых являются кортежи одинаковой длины.

Пусть M — множество, состоящее из кортежей длины S. Тогда пролинией множества M будем называть множество пролиний всех кортежей из М

Очевидно что если М=Х*Y то Пр1М=Х, Пр2М=Y

и если Q⊆Х*Y то Пр1Q⊆Х и Пр2Q⊆Y

Пусть V — множество векторов одинаковой длины S.

В общем случае ПрiV — вовсе не обязательно прямое произведение: оно может быть подмножеством.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *