Что называют приращением аргумента

Приращение аргумента, приращение функции

Урок 37. Алгебра 10 класс

Что называют приращением аргумента

Что называют приращением аргумента

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Что называют приращением аргумента

Что называют приращением аргумента

Что называют приращением аргумента

Конспект урока «Приращение аргумента, приращение функции»

· познакомиться с понятием непрерывной функции;

· познакомиться с понятием предел функции в точке;

· рассмотреть примеры использования данных понятий для решения задач.

Прежде чем приступить к изучению нового материала, давайте выполним упражнение.

Что называют приращением аргумента

Не всегда нам надо знать точные значения тех или иных параметров. Иногда нам достаточно знать, как они изменяются. Например, если мы в течение одного дня выйдем на улицу, то нам не важно, на сколько именно изменилась температура воздуха, а нам важно похолодало или потеплело. Или при движении автомобиля нам, не важно, знать точную скорость, а важно определить разгоняется автомобиль или тормозит.

Причём, если на улице потеплело, то изменения будут со знаком плюс и наоборот если похолодало, то изменения будут со знаком минус.

Если автомобиль разгоняется, то изменения будут со знаком плюс, если тормозит – то со знаком минус.

Для описания таких изменений было введено понятие приращение.

Приращение аргумента обозначают так:

Что называют приращением аргумента

Приращение функции обозначают так:

Что называют приращением аргумента

Давайте рассмотрим, что же такое приращение аргумента и функции на графике.

Что называют приращением аргумента

Что называют приращением аргумента

Рассмотрим ещё один пример.

Что называют приращением аргумента

Давайте вспомним определение непрерывной функции, которое мы формулировали ранее.

Определение непрерывности функции в точке x = a выглядит так:

Что называют приращением аргумента

Определение непрерывности функции в точке можно записать так:

Что называют приращением аргумента

Когда мы вводили определение непрерывной функции, то мы говорили, что функция непрерывна на промежутке X, если она непрерывна в каждой точке промежутка. Давайте уточним, что означает непрерывность функции в концевых точках промежутка, например, как понимать непрерывность функции в точках a и b отрезка [a; b].

Что называют приращением аргумента

Что называют приращением аргумента

Давайте изобразим график линейной функции. Отметим приращение аргумента и функции. И найдём чему равно отношение приращения аргумента к приращению функции.

Источник

Приращение аргумента и функции.

Пусть функция f(x) определена на некотором интервале I, х0 и х два произвольных значения аргумента из этого интервала. Разность между двумя значениями аргумента называется приращением аргумента и обозначаютΔх:

Разность между двумя значениями функции называется приращением функции и обозначаютΔу: Δу=Δ f=f(xo+ Δx)-f(xo)

2. Определение производной.

Пусть функция y = f(x) определена в промежутке X.

Предел отношения приращения функции Δf к приращению аргумента Δх, когда Δх стремится к нулю, при условии, что этот предел существует, называется производной функции f(x) в точке х.

Производной функции y = f(x) в точке хo называется предел

Что называют приращением аргумента = Что называют приращением аргумента.

Если этот предел конечный, то функция f(x) называется дифференцируемой в точке xo; при этом она оказывается обязательно и непрерывной в этой точке.

Производная обозначается символами y / (x0), f / (x0) ; Что называют приращением аргумента, Что называют приращением аргумента.

Читается f'(x) (эф штрих от икс).

Нахождение производной называется дифференцированием функции, поэтому выражение «продифференцировать функцию» равносильно выражению «найти производную функции».

3. Физический смысл производной.

Исходя из определения производной, можно сказать:

1) мгновенная скорость прямолинейного движения есть производная от пути S по времени t: v (t)= S'(t);

2) мгновенная скорость химической реакции есть производная от функции X по аргументу t: v (t) = x'(t).

Таким образом, можно сделать вывод: производная функции у = f(x) по аргументу х есть мгновенная скорость изменения функции у = f(x). В этом состоит физический смысл производной.

Вторая производная функции у = f(x) по аргументу х есть ускорение изменения функции у = f(x).

4. Геометрический, смысл производной.

Рассмотрим график функции f(x) и построим на этом графике произ­вольным образом точку М. В данной точке М проведем касательную к графику функции f(x)

Что называют приращением аргумента

Итак, угловой коэффициент касательной к графику функции в данной точке равен значению ее производной в точке касания. В этом состоит геометрический смысл производной.

Таблица производных

Что называют приращением аргумента Что называют приращением аргумента

Дата добавления: 2016-06-05 ; просмотров: 20947 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Что называют приращением аргумента

Определение : Пусть функция у = f(x) определена в точках х0 и х1. Разность х1 — х0 называют приращением аргумента (при переходе от точки x0 к x1), а разность f(х1) — f(x0) называют приращением функции.

Приращение аргумента обозначают ΔX ( дельта икс, Δ — прописная буква греческого алфавита «дельта»; соответствующая строчная буква пишется так: δ). Приращение функции обозначают ΔY или Δ f.

Итак, x1 — x0 = Δ х, значит, х1 = х0+ Δ x. f(x 1) — f(xо) = Δ у (или Δ f), значит,

Приращение функции Что называют приращением аргументав точке Что называют приращением аргумента— функция обычно обозначаемая Что называют приращением аргументаот новой переменной Что называют приращением аргументаопределяемая как

Что называют приращением аргумента

Переменная Что называют приращением аргументаназывается приращением аргумента.

В случае когда ясно о каком значении Что называют приращением аргументаидёт речь, применяется более короткая запись.

Что называют приращением аргумента

Таким образом все эти непонятные иксы, игреки и дельты становятся вполне конкретными точками на плоскости. И мы понимаем,что фраза из определения приращения «Разность х1 — х0 называют приращением аргумента (при переходе от точки x0 к x1), а разность f(х1) — f(x0) называют приращением функции» имеет вполне определенный смысл.

Надеюсь, что этот обзор помог вам разобраться с такими непонятными определениями, как приращение функции и приращение аргумента. Для тех же, кто по прежнему ничего не понял, я советую разобраться с такими базовыми понятиями, как функция и аргумент функции.

Источник

Что называют приращением аргумента

Что называют приращением аргумента

Что называют приращением аргумента

Что называют приращением аргумента

Приращение аргумента и функции

На оси Х – две точки: x0 и x1 (рис.1). Если от x1 отнимем x0, то узнаем длину шага между ними – а говоря иначе, узнаем, на сколько приросла точка x0 в точке x1. Эта разность между двумя заданными точками оси X и называется приращением аргумента.

Точки x0 и x1 образуют на оси Y соответственно точки у0 и у1. Если от у1 отнять у0, то мы получим приращение функции.

Что называют приращением аргумента
Итак, в функции y = f(x) относительно определенных точек x0 и x1:
разность x1x0 называется приращением аргумента, а разность у1у0 называется приращением функции.

Приращение обозначается греческой буквой Δ (дельта):

Можно сказать и иначе: если к x0 прибавить величину приращения Δx, то мы получим точку x1.
То есть x1 = x0 + Δx (рис.2).
Тогда точку f(x1), отмеченную на первом рисунке как у1, тоже можно обозначить иначе:
f
(
x0 + Δx).

Осталось вывести формулу приращения функции.

Формула приращения функции:

Δy = f(x0 + Δx) – f(x0)

Δf = f(x0 + Δx) – f(x0)

Источник

Алгебра

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Предел функции на бесконечности

Рассмотрим довольно простую функцию

Её график называется гиперболой и выглядит так:

Можно заметить, что при больших положительных значениях х график функции приближается к горизонтальной оси Ох, но не пересекает её. Действительно, если мы будем вычислять значение у при всё больших значениях х, то будем получать всё меньшие, но всё же положительные числа:

Получается, что при бесконечном росте аргумента х функция стремится к нулю. Можно ли эту особенность функции как-то записать, используя математические символы? Оказывается, можно, и выглядит это запись так:

которая означает, что х стремится к бесконечности. После символа lim записана сама функция 1/х. В целом вся запись читается так: «предел функции у = 1/х при х, стремящемся к бесконечности, равен нулю».

Вернемся к графику функции у = 1/х. Видно, что если мы будем брать всё меньшие отрицательные значения х, то функция также будет стремится к нулю. Действительно, попробуем подставлять в нее как можно меньшие значения аргумента:

Чтобы записать эту особенность функции, используется следующая запись:

который может быть получен параллельным переносом графика у = 1/х на две единицы вверх:

Очевидно, что пределы этой функции при х → + ∞ и х → – ∞ равны 2:

Возможны случаи, когда при бесконечном увеличении аргумента функции она не стремится к какому-то конкретному числу, а сама также неограниченно возрастает. Для примера посмотрим на график у = х 3 :

Видно, что при х → ∞ сама функция неограниченно растет, что можно показать расчетами:

Возникает вопрос – для всякой ли функции можно указать ее предел на бесконечности? Оказывается, что нет. Для примера рассмотрим тригонометрическую функцию у = sinx, графиком которой является синусоида:

С одной стороны, sinx явно не стремится к какому-то конкретному числу при увеличении х, он «колеблется» между числами 1 и (– 1). С другой стороны, нельзя и сказать, что он стремится к бесконечности. Получается, что у этой функции просто нет пределов на бесконечности.

Предел функции в точке

Порою нас интересует поведение функции не на бесконечности, а вблизи конкретной точки х0. Конечно, в большинстве случае можно просто вычислить функцию в этой точке, однако иногда это невозможно сделать. Для примера рассмотрим функцию

Очевидно, что точка х = 2 не входит в ее область определения, ведь при подстановке этого значения в функцию знаменатель дроби обратится в ноль. Однако в любой другой точке значение функции будет равняться единице:

График такой функции будет выглядеть как прямая у = 1, у которой есть одна «выколотая точка», соответствующая х = 2:

Итак, функция не определена в точке х = 2, однако можно вычислить предел функции в точке х = 2. Действительно, при любом, сколь угодно близком к 2 значении х функция будет равна единице:

Попробуем также приблизиться к точке 2 с другой стороны, подставляя в функцию числа, меньшие двух:

Снова всё время получается единица. Поэтому мы можем уверенно записать, что

Значительно чаще приходится иметь дело с пределами в точке, которые равны бесконечности. Снова посмотрим на график функции у = 1/х:

Видно, график не пересекает ось Оу, ведь число х = 0 не входит в область определения функции. Однако можно заметить, что при приближении х к нулю функция неограниченно возрастает:

Обратите внимание, что под пределом мы использовали запись «х → + 0», а не «х → 0». Почему? Дело в том, что если мы будем приближаться к нулю с «противоположной» стороны, подставляя в функцию не положительные, а отрицательные числа, то функция будет стремится к – ∞:

Получается, что предел функции в точке х = 0 зависит от того, с какой стороны мы приближаемся к этой точке, слева или справа. В связи с этим в математике существует понятие односторонних пределов. Для обозначения пределов, получаемых при приближении к нулю справа, то есть со стороны бОльших чисел, перед ним ставят знак плюс, а при указании предела слева, то есть со стороны мЕньших чисел – знак минус:

Предел и односторонние пределы – это два разных понятия. Считается, что функция имеет предел в точке только тогда, когда оба односторонних предела в этой точке совпадают.

В качестве ещё одного примера предела функции в точке можно привести зависимость у = tg х, график которой выглядит следующим образом:

В точке х = π/2 функция не определена. Однако видно, что при приближении к этой точке слева функция неограниченно возрастает, а при приближении справа – неограниченно убывает. Это записывается следующим образом:

До этого мы вычисляли пределы функций в точках, где сами функции не определены. Однако пределы можно вычислять и в тех точках, где функция определена. В большинстве случаев (но не всегда) они как раз равны значению функции в этой точке. Например, найдем предел

В точке х = 2 значение функции будет равно 4:

Будут ли односторонние пределы в этой точке также равняться 4? Сначала проверим предел справа

Действительно, получаем значения у, всё более близкие к 4. Аналогично можно убедиться, что и предел слева также равен 4:

Приведем несколько искусственный пример функции, у которой предел в точке не совпадает со значением функции в этой точке. Пусть функция задается с помощью такого графика

Он представляет собой параболу у = х 2 с выколотой точкой (2; 4). При этом функция определена в точке х = 2, но имеет там значение, равное единице. Аналитически эту функцию можно описать так:

Понятно, что у(2) = 1, однако попытаемся приблизиться к точке х = 2 справа и слева и посмотрим, что получится:

Мы видим, что при х→2 функция и справа, и слева стремится к четверке, а не к единице. То есть получается, что предел функции в точке х = 2 не совпадает со значением функции этой функции в этой же точке. Такая ситуация произошла именно из-за того, что точка х = является выколотой.

Сразу заметим, что непосредственно в практических задачах пределы почти не используются. В связи с этим эта тема изучается в школьном курсе довольно поверхностно, не дается строгое определение предела функции (предполагается, что это понятие интуитивно понятно), а также не рассматриваются примеры на вычисление пределов функций. С другой стороны, на понятии предела построены почти все строгие рассуждения и доказательства в математическом анализе. В частности, определение понятие производной (которая имеет огромное практическое применение) дается именно с помощью предела. Поэтому полностью исключить пределы из школьного курса нельзя.

Приращение аргумента и функции

Часто нас интересует, как изменяется функция при изменении аргумента. Например, известно, что объем куба вычисляется по формуле

С точки зрения математического анализа мы в данном случае рассматривали поведение функции у = х 3 в точке х = 2. Мы допустили некоторое изменение величины х, которое называют приращением аргумента и обозначают как ∆х. Далее мы высчитали, какое изменение величины у, или приращение функции, обозначаемое как ∆у, соответствует этому приращению аргумента. Выяснилось, что приращению ∆х = 0,1 соответствует приращение ∆у = 1,261.

В более общем случае произвольной функции у = f(x) можно дать некоторое приращение ∆х в некоторой точке х0. В результате этого изменится и само значение f(x), причем величину этого изменения обозначают как ∆у. Это можно проиллюстрировать графически:

Задание. Дана функция у = 3х 2 + х + 4. Вычислите приращение функции в точке х0 = 5, если ∆х = 1.

Решение. Сначала вычислим новое значение аргумента функции, с учетом данного ему приращения:

Далее вычислим значения функции, соответствующие старому и новому аргументу:

Задание. Радиус круга, измеренный с погрешностью не более 0,5 см в меньшую сторону, равен 10 см. Оцените погрешность вычисления его площади.

Решение. Площадь круга рассчитывается по формуле:

Средняя скорость изменения функции

Часто в физике и других естественнонаучных дисциплинах одни величины характеризуют изменение других величин. Классический случай – это скорость, которая характеризует, насколько быстро изменилось положение тела (или материальной точки в пространстве). Рассмотрим пример. Пусть пешеход движется по прямой улице с постоянной скоростью 2 м/с. Попытаемся построить график, который иллюстрирует зависимость пройденного пешеходом пути и его скорости от времени. Известно, что при равномерном прямолинейном движении пройденный путь можно найти по формуле:

S = v*t

Так как скорость равна 2 м/с, то зависимость пути от времени будет выглядеть так:

которая является прямой пропорциональностью. Поэтому ее график будет прямой линией:

Так как скорость во время всего движения остается равной 2 м/с, то зависимость скорости от времени будет иметь вид v = 2, а выглядеть она будет как горизонтальная линия:

В данном случае найти зависимости s(t) и v(t) было очень легко. Но теперь усложним задачу. Пусть зависимость s(t) задается не прямой линией, а некоторой кривой:

Можно ли теперь что-то сказать о скорости движения пешехода?

Ясно, что в различные моменты времени скорость пешехода различна. Но мы можем найти среднюю скорость пешехода в какой-то момент времени. Например, рассмотрим промежуток времени со 2-ой по 10-ую секунду.

Его протяженность, очевидно, равна 10 – 2 = 8 секундам. Если первый момент времени обозначить как t1, а второй как t2, то протяженность этого промежутка времени (∆t) можно вычислить по формуле

Судя по графику, к моменту времени t1 пешеход прошел только 1 метр, а на момент t2он преодолел уже 9,5 м. Сколько же метров он прошел за промежуток времени ∆t? Если первое расстояние обозначить как s1, а второе как s2, то пройденное расстояние (∆s) можно рассчитать так:

Тогда средняя скорость на рассматриваемом участке можно вычислить, поделив ∆s на ∆t

В данной ситуации мы рассматривали функцию, которая задает зависимость между перемещением пешехода и временем. Средняя скорость характеризует, как быстро двигается пешеход, то есть как быстро функция s(t) меняет своё значение. Очевидно, что в данном случае величина ∆t – это некоторое приращение аргумента функции s(t), в то время как ∆s– это приращение самой функции. Получается, что с помощью приращений можно вычислять среднюю скорость объектов.

Однако в физике рассматривается не только скорость перемещения вточек пространстве. Например, можно говорить о скорости остывания горячего чайника. Пусть его температура меняется по закону, график которого представлен на рисунке:

Можно ли узнать, с какой средней скоростью остывал чайник на промежутках от 2-ой до 4-ой минуты? Да, для этого надо в точке t = 2 мин дать приращение аргумента ∆t = 2мин и посмотреть, какое приращение ∆T получит сама функция:

Пусть t1 = 2 мин, а t2 = 4 мин. Тогда

По графику видно, что в момент t1 температура чайника составляет Т1 = 40°С. Через две минуты она уже упала до отметки Т2 = 20°С. Получается, что за промежуток ∆t функция T(t) получила приращение

Обратите внимание, что приращение оказалось отрицательным. Дело в том, что температура чайника падала, то изменялась в меньшую сторону. Знак минус указывает именно на направление изменения функции. Если бы чайник нагревался, то приращение оказалось бы положительным.

Теперь мы можем вычислить среднюю скорость остывания чайника на промежутке между 2-ой и 4-ой минутой:

Знак минус указывает на то, что температура на этом промежутке времени уменьшается, а не возрастает.

В более общем случае, когда у нас есть произвольная функция у = f(x), с помощью приращений можно вычислить среднюю скорость её изменения на каком-нибудь промежутке. Пусть первая точка промежутка обозначается как х0, а его протяженность составляет ∆х. Тогда первой точке соответствует значение функции у(x0), а концу промежутка – значение у(x0 + ∆x):

Тогда средняя скорость изменения функции на промежутке [x0;x0 + ∆x] рассчитывается по формуле:

Мгновенная скорость и понятие производной

Итак, зная функцию, можно вычислить среднюю скорость ее изменения на любом промежутке. Но, когда автомобиль едет по шоссе, его спидометр показывает не среднее, а конкретное значение скорости в каждый момент времени. Другими словами, у автомобиля есть мгновенная скорость, и именно ее показывает спидометр. Как же узнать ее?

Пусть у нас есть функция s(t), определяющая пройденной машиной путь, и нам требуется найти мгновенную скорость в некоторый момент времени t1. Мы можем дать функции s(t) приращение ∆t, а потом найти и среднюю скорость на промежутке [t1; t1 + ∆t]. Естественно, она будет являться лишь некоторым приближением, с помощью которого мы оцениваем мгновенную скорость в момент t1. Однако далее мы можем уменьшить промежуток ∆t. Тогда у нас получится иное значение средней скорости, которое будет более близким к мгновенной скорости. Чем меньший промежуток ∆t мы возьмем, тем ближе к мгновенной скорости в точке t0 будет полученное нами значение средней скорости.

Теперь возьмем более короткий промежуток ∆t, равный всего лишь 0,1 с. То есть мы рассмотрим период времени между моментом t1 = 5 cи t2 = 5,1 c. Снова-таки, к 5-ой секунде машина проедет 25 метров, а к моменту 5,1 сона пройдет 5,1 2 = 26,01 м. То есть за 0,1 с автомобиль преодолеет 26,01 – 25 – 1,01 м, а средняя скорость при этом составит

Ещё раз уменьшим промежуток ∆t. Пусть теперь он составляет всего 0,01с. Тогда средняя скорость будет определяться так:

Видно, что при уменьшении промежутка ∆t средняя скорость стремится к величине 10 м/с. Поэтому логично считать именно эту величину мгновенной скоростью машины в момент времени t = 5 c. Однако возникает вопрос – уверены ли мы, что мгновенная скорость стремится именно к 10 м/с, а не, скажем, к 10,001 м/с? Как точно определить это число? Здесь как раз помогают пределы. Можно записать, что мгновенная скорость – это предел отношения ∆s/∆t при ∆t, стремящемся к нулю. То есть

Получили, что мгновенная скорость в момент t1 = 5 действительно равна 10 м/с.

Решение. За 10 секунд самолет успеет преодолеть

Дадим функции s(t) приращение ∆t и обозначим как t1 момент времени, когда со старта прошло 10 секунд. Тогда к моменту t1 + ∆t самолет успеет пройти

Решая данную задачу, мы дали функции s(t) приращение ∆t и записали отношение ∆s/∆t. Далее мы устремили величину ∆t к нулю и посмотрели, к какому числу устремится отношение ∆s/∆t. Это число и оказалось мгновенной скоростью. В более общем случае произвольной функции у = f(x)в точке х0 можно дать приращение аргумента ∆х, которому будет соответствовать некоторое приращение функции ∆у. Далее можно вычислить предел отношения ∆у/∆х, который будет характеризовать, как быстро в точке х0 функция меняет свое значение. Этот предел называют производной функции в точке х0. Для обозначения производной над функцией ставят штрих.

В общем случае алгоритм вычисления производной в некоторой точке следующий:

1.Фиксируем точку х0, вычисляем для нее значение функции у(х). Это значение будет конкретным числом

Это приращение также должно содержать величину ∆х.

Задание. Найдите производную функции у = 4х 2 + 7х в точке х0 = 2.

Решение. Сначала вычислим значение функции в точке х0:

Далее определяем величину у(х0 + ∆х) (это будет не конкретное число, а некоторое выражение, содержащее переменную ∆х):

Задание. Найдите производную функции у = 1/х в точке х0 = 5.

Решение. Высчитаем у(х0):

Пусть у функции есть приращение ∆х, тогда в точке х0 + ∆х ее значение составит:

В рассмотренных примерах для вычисления производной мы использовали ее определение. Однако на практике такой метод почти не используется. В будущем мы узнаем более эффективные способы для нахождения производной.

Мы уже убедились, что использование производной помогает находить мгновенную скорость тел. По этой причине понятие производной функции играет огромную роль в механике (разделе физике, изучающем движение). Однако этим ее практическое применение не ограничивается. По сути, она является основой для всей классической физики, и именно ее появление в XVII в. обеспечило выдающийся прогресс в науке вплоть до конца XIX в. При этом производная используется и в геометрии для анализа графиков функций. Более подробно ее применение будет также рассмотрено позже.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *