Что называют примером числового выражения

Числовые и буквенные выражения

Числовые выражения

В этом разделе мы узнаем, что называют числовым выражением и значением выражения, научимся читать выражения.

Значение выражения — это результат выполненных действий.

Что называют примером числового выражения

Чтение числовых выражений

Решение числовых выражений

45 – (30 + 2) = …
Сначала выполняем действие, записанное в скобках. К 30 прибавляем 2.
30 + 2 = 32
Теперь нужно из 45 вычесть 38.
45 – 32 = 13
45 – (30 + 2) = 13

Сравнение значений числовых выражений

Сравнить числовое выражение – найти значение каждого из выражений и их сравнить.

Для этого найдем значения каждого из них:

Буквенные выражения

Буквенным называется математическое выражение, в котором используются цифры, знаки действий и буквы. Например, (47 + d) – 11.

Для записи буквенных выражений необходимо знать некоторые буквы латинского алфавита. Мы приводим его полностью, чтобы ты знал, с какими буквами можешь встретиться при составлении, решении или чтении буквенных выражений.

Что называют примером числового выражения

Чаще всего используются буквы:

a, b, c, d, x, y, k, m, n

Алгоритм решения буквенного выражения

1. Прочитать буквенное выражение

2. Записать буквенное выражение

3. Подставить значение неизвестного в выражении

4. Вычислить результат

Читаем выражение: Из 28 вычесть с или Найти разность числа 28 и с

Подставим вместо неизвестного «с» число 4.

У нас получается выражение: 28 – 4

Переменные

Буквы, которые содержатся в буквенных выражениях называются переменными. Например, в выражении с + x + 2 переменными являются буквы c и x. Если вместо этих переменных подставить любые числа, то буквенное выражение с + x + 2 обратится в числовое выражение, значение которого можно будет найти.

Числа, которые подставляют вместо переменных называют значениями переменных. Например, изменим значения переменных c и x. Для изменения значений используется знак равенства

Мы изменили значения переменных c и x. Переменной c присвоили значение 2, переменной x присвоили значение 3, тогда выражение с + х + 2 будет выглядеть так:

Теперь мы можем найти значение этого выражения:

с + х + 2 = 2 + 3 + 2 = 5 + 2 = 7

Поделись с друзьями в социальных сетях:

Источник

Урок 15 Бесплатно Числовые и буквенные выражения

Любые математические задачи и примеры записываются с помощью математического языка.

Математический язык- это язык, не требующий перевода, универсальный и понятный всем, имеющий четкую структуру и грамматику.

Верная математическая запись всегда точна, логична, компактна, удобна для понимания, однозначно отражает действие, операцию, понятие.

Определенная осмысленная последовательность знаков (чисел, букв), связанных между собой знаками арифметических операций, называют математическим выражением.

Математические выражения делят на числовые и буквенные.

На этом уроке вы познакомитесь с числовыми и буквенными выражениями.

Узнаете, какое выражение называют числовым, а какое буквенным.

Научитесь составлять числовые и буквенные выражения к задачам.

Что называют примером числового выражения

Выясните, как правильно записывать, читать и находить значение математических выражений.

Числовые выражения

Числовые выражения вам уже хорошо знакомы.

В начальных классах на уроках математики, решая задачи и примеры, вы составляли и записывали числовые выражения и находили значения этих выражений.

Числовое выражение- это запись, состоящая из чисел, арифметических операций, скобок и иных специальных математических символов.

Что называют примером числового выражения

Числовым выражением можно назвать только такую запись, которая является осмысленной и составлена согласно математическим правилам.

Рассмотрим примеры числовых выражений.

Не каждую математическую запись из символов и знаков можно считать числовым выражением.

Числовое выражение всегда ориентировано на то, чтобы операции, входящие в него, могли быть выполнены.

Если числовое выражение невозможно вычислить, то оно не имеет смысла.

Существуют такие математические записи, которые на первый взгляд можно принять за числовые выражения, но вычислить их невозможно.

Число 15 необходимо разделить на результат операции в скобках, а он равен нулю.

Математические равенства и неравенства выражениями не являются, но равенства и неравенства состоят из математических выражений.

Два числовых выражения, соединенные знаком равно «=», называют числовым равенством.

Два числовых выражения, соединенные знаками больше «>» или меньше « 4 не является числовым выражением, это неравенство.

Смысл решения любой задачи, любого примера заключается в том, чтобы найти значение выражения, которое превращает его в верное равенство.

Число, которое получается после выполнения всех арифметических операций, называют значением числового выражения.

Следовательно, чтобы найти значение числового выражения, необходимо выполнить в определенном порядке все арифметические операции, указанные в выражении.

У числового выражения значение только одно.

У меня есть дополнительная информация к этой части урока!

Что называют примером числового выражения

Порядок выполнения математических операций очень важен для получения верного значения числового выражения.

В математике порядок выполнения действий в выражении определяют сами арифметические операции и скобки, содержащиеся в данном выражении.

Таким образом, если в числовом выражении стоят скобки, то математическая операция, стоящая в них, выполняется в первую очередь.

Следующими выполняются последовательно слева направо операции умножения и деления, если такие присутствуют в выражении.

Последними выполняются действия сложения и вычитания так же в порядке их следования друг за другом слева направо.

Более подробно порядок выполнения арифметических операций будет рассмотрен несколькими уроками позже.

Важно уметь не только верно записывать числовые выражения, но и уметь их правильно читать.

Чтобы прочитать числовое выражение нужно определить, какая арифметическая операция является последней при вычислении значения этого выражения.

Так, например, если последнее по порядку действие было сложение, то выражение называют «суммой».

Если последним действием является вычитание, то выражение называют «разностью».

Следовательно, если последним действием является умножение, то выражение называют «произведением», если деление- «частным».

Умение составлять математические выражения и находить их значение используют при решении как простых, так и составных задач.

Рассмотрим пример решения составной задачи и выясним особенности процесса составления числовых выражений.

Известно, что любая составная задача содержит несколько простых.

Существуют различные способы оформления решения текстовых задач.

Чаще всего используют такие формы записи решения задач:

1. По действиям с пояснениями.

При решении составных задач важно выделить главное, сделать краткую запись, разделить задачу на простые, составить план решения.

В первый день собрали 12 кг клубники, а во второй день на 2 кг больше.

Сколько килограммов клубники собрали за эти два дня?

Что называют примером числового выражения

Запишем кратко условие задачи:

Изобразим к задаче рисунок в виде схемы.

Что называют примером числового выражения

Чтобы определить, сколько собрали клубники за два дня, необходимо знать, какое количество клубники было собрано в первый и во второй день.

Из условия задачи известно количество клубники, собранной в первый день.

Неизвестно количество клубники, собранной во второй день.

Когда будет известно сколько собрали клубники во второй день, можно узнать какое количество ягод собрали за два дня.

Задачу решаем в два действия (каждое действие поясним).

1. Выясним сколько килограммов ягод собрали во второй день.

Известно, что в первый день собрали 12 кг клубники. Так как во второй день собрали на 2 кг больше, то во второй день собрали столько же, как в первый, и еще 2 кг.

Выполним сложение чисел 12 и 2, получим выражение 12 + 2.

Найдем значение данного числового выражения:

12 + 2 = 14 (кг) клубники собрали во второй день.

2. Вторым действием определим общее количество ягод, собранных за два дня.

Необходимо сложить все ягоды, который собрали в первый и во второй день, получим следующее выражение: 12 + 14.

Найдем значение данного числового выражения:

12 + 14 = 26 (кг) клубники собрали за два дня.

Ответ: 26 кг.

Как нам уже известно, решение задачи можно записать не только по действиям, но и в форме выражения.

Запись решения составной задачи с помощью составления по ней итогового числового выражения позволяет увидеть ход решения в целом, и такая запись сокращает время оформления задачи.

Составим числовое выражение для решения нашей задачи.

Согласно рассуждениям, изложенным выше, имеем следующие данные:

Определим общее количество ягод, собранных за два дня.

Сложив все ягоды, собранные в первый и во второй день, получим следующее числовое выражение:

12 + (12 + 2).

Вычислим значение данного выражения, выполнив последовательно все действия в нем.

Тогда запись решения задачи будет выглядеть так:

12 + (12 + 2) = 12 + 14 = 26 (кг) клубники собрали за два дня.

Ответ: 26 кг.

Попробуем решить вторую задачу.

Задача 2.

В первый день собрали 12 кг клубники, а во второй день на 5 кг больше.

Сколько килограммов клубники собрали за эти два дня?

Скорее всего вы заметили, что первая и вторая задачи отличаются только одним числом, а именно число 2 заменено на число 5.

Остальные условия задачи остались прежние.

Все логические рассуждения во второй задаче аналогичны рассуждениям первой.

Таким образом, имеем следующие данные:

Определим общее количество ягод, собранных за два дня.

Сложив все ягоды, собранные в первый и во второй день, получим следующее выражение:

12 + (12 + 5).

Вычислим значение данного выражения, выполнив последовательно все действия в нем.

Тогда запись решения задачи будет выглядеть так:

12 + (12 + 5) = 12 + 17 = 29 (кг) клубники собрали за два дня.

Ответ: 29 кг.

Пройти тест и получить оценку можно после входа или регистрации

Буквенные выражения

Рассмотрим еще одну такую же задачу, как первая и вторая, рассмотренные выше, но число, которое менялось в первой и во второй задаче заменим на ☐ пустое окошко, в которое можно вписать любое значение.

Тогда получим следующую задачу:

В первый день собрали 12 кг клубники, а во второй день на ☐ кг больше.

Сколько килограммов клубники собрали за эти два дня?

В математике принято обозначать переменное число не пустым окошком, а буквой.

Для нашей задачи вместо пустого окошка поставим латинскую букву «а».

По аналогии с уже решенными задачами математическое выражение для данной задачи будет следующее: 12 + (12 + а).

Если вместо буквы а подставлять различные числа, то каждый раз будем получать различные числовые выражения и, как следствие, различные значения.

Числовое выражение, в котором числа обозначены цифрами и буквами, называют буквенным выражением.

Соответственно, буквенное выражение отличается от числового тем, что содержит букву.

Буквы, которые содержатся в буквенных выражениях, называются переменными.

Для обозначения чисел буквами используют строчные буквы латинского алфавита.

Что называют примером числового выражения

Буквенные выражения должны быть составлены согласно математическим правилам и по такому же принципу, как числовые выражения.

1. Буквенные выражения используют для математических доказательств, для описания свойств, правил, законов.

Например, переместительное свойство сложения, записанное с помощью буквенных выражений, выглядит так: a + (b + c) = (a + b) + c.

Сочетательное свойство сложения, записанное с помощью буквенных выражений, выглядит так: a + b = b + а.

2. Правило, записанное в виде равенства двух буквенных выражений, называется формулой.

Формула подобно универсальной заготовке позволяет описывать различные процессы, действия, состояния и др.

Формула устанавливает взаимосвязь между величинами.

Например, формула для определения периметра треугольника, записанная с помощью буквенных выражений, выглядит так: P = a + b + c, где

P— это периметр треугольника

а, b, c— это стороны треугольника.

Что называют примером числового выражения

В данном случае буквенная запись позволяет определить периметр (Р) любого треугольника, независимо от размеров его сторон.

3. Умение составлять буквенные выражения и находить их значения при заданном значении переменной используют при решение различных задач

Пройти тест и получить оценку можно после входа или регистрации

Источник

Числовые и буквенные выражения. Порядок действий.

теория по математике 📈 алгебраические выражения

Числовое выражение – это выражение, состоящее из чисел и знаков действий, а также скобок.

Пример №1. В каждом из этих выражений содержатся числа, между которыми есть знаки действий, а также бывают скобки. Это и есть числовые выражения.

Если выполнить по порядку все действия, которые есть в числовом выражении, то получится определенное число, которое называют значением числового выражения. Порядок действий в числовых выражениях определяется правилами.

Действия сложение и вычитание принято называть действиями первой ступени, а умножение и деление – действиями второй ступени. Возведение в степень – это действие третьей ступени.

Порядок действий в выражении, не содержащем скобки

890 – 567 + 2340 – 124

в данном выражении действия одной ступени (сложение и вычитание), поэтому выполняем их по порядку слева направо:

в этом выражении также действия одной ступени (умножение и деление), поэтому выполняем их по порядку слева направо:

здесь присутствуют действия всех ступеней. Поэтому начинаем выполнять их с наивысшей ступени – возведения в степень. Затем слева направо выполняем деление и умножение, а затем слева направо – сложение и вычитание:

Порядок действий в выражении, содержащем скобки

Если числовое выражение содержит скобки, то выполняют сначала действия в скобках, следуя правилу, а затем – действия за скобками.

(3245 + 67,92:2)×3 + (126×2 – 321:3) – 125

здесь числовое выражение содержит скобки, поэтому действия выполняем в скобках слева (деление, затем сложение), затем в скобках справа (умножение, деление, вычитание):

Теперь выполняем действия за скобками слева направо (умножение, сложение, вычитание):

Буквенные выражения. Числовое значение буквенного выражения.

Выражения, содержащие не только числа и знаки действий, но и буквы, называют буквенными. Буквы также можно называть «переменная». Обращаем внимание на то, что знак «умножить» между числом и буквой не пишется.

Пример №6. Примеры буквенных выражений:

Числовое значение буквенного выражения – это значение числового выражения, полученного при подстановке конкретных значений переменной в данное выражение.

Пример №7. Найдем значение выражения с + х при с=23, х=0,17. Для этого подставим вместо с и х их данные числовые значения и получим числовое выражение 23 + 0,17. Теперь вычислим результат и получим 23,17. Таким образом, числовое значение буквенного выражения с + х равно 23,17.

Пример №8. Н айдем значение выражения 11х +(сd) при х=10, c=178, d=121. Для этого подставляем вместо каждой переменной соответствующие числовые значения и получим числовое выражение 11×10 + (178 – 121). Выполнив действия, получим ответ 167. Это и есть числовое значение буквенного выражения.

Заметим, что и числовые и буквенные выражения можно называть еще как алгебраические выражения.

В данном случае необходимо сначала упростить выражение, для этого раскроем скобки:

(x + 5) 2 — x (x — 10) = x 2 + 2 • 5 • x + 25 — x 2 + 10x

Затем приведем подобные слагаемые:

x 2 + 2 • 5 • x + 25 — x 2 + 10x = 20 x + 25

Далее подставим x из условия:

20 x + 25 = 20 • (-1/20) + 25 = — 1 + 25 = 24

pазбирался: Даниил Романович | обсудить разбор | оценить

На координатной прямо отмечены числа a и b:

Что называют примером числового выражения

Какое из приведенных утверждений для этих чисел неверно:

Для удобства решения необходимо оценить данные нам числа. Из координатной прямой видно, что a > 0, так как расположено справа от ноля, а b 0

Значит, утверждение неверно.

pазбирался: Даниил Романович | обсудить разбор | оценить

Источник

Числовые выражения

Числовое выражение – это любая запись из чисел, знаков арифметических действий и скобок. Числовое выражение может состоять и просто из одного числа. Напомним, что основными арифметическими действиями являются «сложение», «вычитание», «умножение» и «деление». Этим действиям соответствуют знаки «+», «-», «∙», «:».

Что называют примером числового выражения

Значение числового выражения.

Сразу скажем, что если мы выполним действия указанные в числовом выражении, то в результате мы получим число. Это число называется значением числового выражения.

Попробуем вычислить, что у нас получится в результате выполнения действий нашего примера. Согласно порядку выполнения арифметических действий, сначала выполним операцию умножения. Умножим 8 на 9. Получим 72. Теперь сложим 72 и 5. Получим 77.
Итак, 77 – значение числового выражения 5 + 8 ∙ 9.

Числовое равенство.

Можно это записать таким образом: 5 + 8 ∙ 9 = 77. Здесь мы впервые использовали знак «=» («Равно»). Такая запись, при которой два числовых выражения разделены знаком «=», называется числовым равенством. При этом, если значения левой и правой части равенства совпадают, то равенство называют верным. 5 + 8 ∙ 9 = 77 – верное равенство.
Если же мы напишем 5 + 8 ∙ 9 = 100, то это уже будет неверное равенство, так как значения левой и правой части данного равенства уже не совпадают.

Следует отметить, что в числовом выражении мы также можем использовать скобки. Скобки влияют на порядок выполнения действий. Так, например, видоизменим наш пример, добавив скобки: (5 + 8) ∙ 9. Теперь сначала нужно сложить 5 и 8. Получим 13. А затем умножить 13 на 9. Получим 117. Таким образом, (5 + 8) ∙ 9 = 117.
117 – значение числового выражения (5 + 8 ) ∙ 9.

Как прочитать числовое выражение?

Например, числовое выражение (1+5)(10-3) читается так: «произведение суммы чисел 1 и 5 на разность чисел 10 и 3».

Примеры числовых выражений.

Приведем пример более сложного числового выражения:

В данном числовом выражении используются простые числа, обыкновенные и десятичные дроби. Также используются знаки сложения, вычитания, умножения и деления. Черта дроби также заменяет знак деления. При кажущейся сложности, найти значение данного числового выражения довольно просто. Главное уметь выполнять операции с дробями, а также внимательно и аккуратно делать вычисления, соблюдая порядок выполнения действий.

Далее, в числителе дроби \[\frac<1,25+3,47+4,75-1,47><4\centerdot 0,5>\] у нас выражение 1,25+3,47+4,75-1,47. Для упрощения данного выражения применим переместительный закон сложения, который гласит: «От перемены мест слагаемых сумма не изменяется». То есть, 1,25+3,47+4,75-1,47=1,25+4,75+3,47-1,47=6+2=8.

Когда числовые выражения не имеют смысла?

Если мы в числовом выражении помимо чисел будем использовать буквы, то у нас получится уже алгебраическое выражение.

Источник

Числовые и буквенные выражения. Формулы

Так же, как и у нашего языка общения есть алфавит и знаки-помощники (точка, тире, запятая и т.д.), математический язык вычисления также имеет свой алфавит:

Буквы и цифры в математике служат для обозначения чисел.

Цифрами обозначается конкретное, какое-то определённое число.

Буквамилюбое или неизвестное число, в зависимости от задачи.

МАТЕМАТИЧЕСКИЕ ВЫРАЖЕНИЯ – это «слова» и «фразы» математики, записи, в которых содержатся:

При этом знаки математических действий и вспомогательные знаки ОБЯЗАТЕЛЬНО связывают числа и обозначают последовательность действий над ними.

Примеры математических выражений:

ВНИМАНИЕ!

НЕ ЯВЛЯЕТСЯ математическим выражением:

Например, это НЕ математические выражения:

Случаи опускания знака умножения в выражениях

В буквенных выражениях обычно знак умножения пишут только между числами, которые выражены цифрами.

В остальных случаях знак умножения опускают, например:

Как читать математические выражения

Простейшие математические выражения, состоящие из одного математического действия, называются по названию результата этого действия:

Более сложные выражения, называют по последнему выполняемому действию:

Важно не только уметь читать готовые математические выражения, но и «переводить» слова на математический язык – язык чисел, знаков действия и других символов:

Алгоритм чтения математических выражений

Чтобы прочитать математическое выражение, нужно:

При чтении сложного выражения повторяем действия алгоритма столько раз, сколько необходимо.

Формулы

Используя математические выражения можно одну величину представить в виде другой, то есть, установить зависимость значения одной величины от значения другой величины.

Велосипедист едет со скоростью \(v_<1>\) км/ч. Найти скорость:

а) автомобиля, если известно, что он едет в 3 раза быстрее: \(v_=3\cdot v_<1>\);

б) пешехода, если известно, что он двигается на 15 км/ч медленнее: \(v_

= v_<1>-15\).

Иначе это называется выразить одну величину через другую.

Многие величины в математике имеют свои собственные обозначения. Например: S – площадь фигуры, P – периметр, t – время и т.д.

Запись такого равенства называется формулой.

ФОРМУЛА – это запись зависимости значения некоторой величины от значений одной или нескольких других величин. Или другими словами, это запись правила вычисления одной неизвестной величины при помощи известных других.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 3.3 / 5. Количество оценок: 8

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *