Что называют полной группой событий
Полная группа событий
По́лной гру́ппой собы́тий в теории вероятностей называется система случайных событий такая, что в результате произведенного случайного эксперимента непременно произойдет одно из них. Сумма вероятностей всех событий в группе всегда равна 1.
Определение
Пусть есть вероятностное пространство. Любое разбиение множества элементами сигма-алгебры называется полной группой событий.
Пример
Предположим, проводится подбрасывание монеты. В результате этого эксперимента обязательно произойдет одно из следующих событий:
Таким образом, система является полной группой событий.
Полезное
Смотреть что такое «Полная группа событий» в других словарях:
Группа Дятлова — Гибель тургруппы Дятлова событие, случившееся в ночь с 1 на 2 февраля 1959 года на Северном Урале, когда при загадочных обстоятельствах погибла группа туристов, возглавляемая Игорем Дятловым. Причина гибели не ясна до сих пор. Перевал, рядом с… … Википедия
Сплин (группа) — Сплин Основная информация Жанр … Википедия
Машина времени (группа) — У этого термина существуют и другие значения, см. Машина времени (значения). Машина времени … Википедия
Инь-Ян (группа) — Эта статья о группе. О взаимодействии крайних противоположностей см. Инь Ян. Инь Ян Жанры поп музыка Годы 25 ноября 2007 по … Википедия
Последовательность событий 11 сентября 2001 года — Здесь приведена хронология теракта 11.09.01, в котором самолёт разрушил одну из башен близнецов торгового центра в Нью Йорке. Дано местное Нью Йоркское время. Содержание 1 События 1.1 6:00 AM 1.2 7:00 AM 1.3 8:00 AM 1.4 9:00 AM … Википедия
Хронология событий 11 сентября 2001 года — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Здесь приведен … Википедия
Случайное событие — Случайное событие подмножество множества исходов случайного эксперимента; при многократном повторении случайного эксперимента частота наступления события служит оценкой его вероятности. Случайное событие, которое никогда не реализуется в… … Википедия
Террористические акты 11 сентября 2001 года — Террористические акты 11 сентября 2001 года … Википедия
1.2.2. Совместные и несовместные события.
Противоположные события. Полная группа событий
События называют несовместными, если в одном и том же испытании появление одного из событий исключает появление других событий. Простейшим примером несовместных событий является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с чёрточкой наверху:
– в результате броска монеты выпадет орёл;
– в результате этого же броска выпадет решка.
Совершено ясно, что в отдельно взятом испытании появление орла исключает появление решки (и наоборот), поэтому данные события и называются несовместными.
Противоположные события легко формулируются из соображений элементарной логики:
– в результате броска игрального кубика выпадет 5 очков;
– в результате этого же броска выпадет число очков, отличное от пяти.
Либо 5, либо не 5, т.е. данные события несовместны и противоположны.
Аналогично:
– из колоды будет извлечена карта трефовой масти, либо:
– извлечена пика, черва или бубна.
Множество несовместных событий образуют полную группу, если в результате отдельно взятого испытания обязательно появится одно и только одно из этих событий. Очевидно, что любая пара противоположных событий, например, и (выпадение / невыпадение «пятёрки») образует полную группу. Но, разумеется, полную группу могут образовывать не только противоположные события:
– в результате броска игрального кубика выпадет 1 очко;
– … 2 очка;
– … 3 очка;
– … 4 очка;
– … 5 очков;
– … 6 очков.
События несовместны (поскольку появление какой-либо грани исключает одновременное появление других) и образуют полную группу (так как в результате испытания обязательно появится одно из этих шести событий).
И из этих двух примеров вытекает ещё одно важное понятие, которое нам потребуется в дальнейшем – это элементарность исхода (события). Если совсем просто, то элементарное событие нельзя «разложить на другие события». Например, события элементарны, но событие не является таковым, так как подразумевает выпадение 1, 2, 3, 4 или 6 очков (включает в себя 5 элементарных исходов).
В примере с картами события (извлечение трефы, пики, червы или бубны соответственно) несовместны и образуют полную группу, но они неэлементарны. Если считать, что в колоде 36 карт, то каждое из перечисленных выше событий включает в себя 9 элементарных исходов. Аналогично – события (извлечение шестёрки, семёрки, …, короля, туза) несовместны, образуют полную группу и неэлементарны (каждое включает в себя 4 исхода).
Таким образом, элементарным исходом здесь считается лишь извлечение какой-то конкретной карты, и 36 несовместных элементарных исходов тоже образуют полную группу событий.
И коротко о событиях совместных. События называются совместными, если в отдельно взятом испытании появление одного из них не исключает появление другого. Например:
– из колоды карт будет извлечена трефа;
– из колоды карт будет извлечена семёрка.
– данные события совместны, т.к. при излечении семёрки треф одновременно имеют место оба события.
Понятие совместности охватывает и бОльшее количество событий:
– завтра в 12.00 будет дождь;
– завтра в 12.00 будет гроза;
– завтра в 12.00 будет солнце.
Ситуация, конечно, редкая, но совместное появление всех трёх событий, не исключено. Следует отметить, что перечисленные события совместны и попарно.
Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!
С наилучшими пожеланиями, Александр Емелин
Теория вероятностей, формулы и примеры
Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Основные понятия
Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.
Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.
Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».
Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.
Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.
Ну, скажем, смотрим на тучи и понимаем, что дождь — вполне себе вероятное событие. А если светит яркое солнце, то дождь — маловероятное или невероятное событие.
Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:
Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.
Формулы по теории вероятности
Теория вероятности изучает события и их вероятности. Если событие сложное, то его можно разбить на простые составные части — так легче и быстрее найти их вероятности. Рассмотрим основные формулы теории вероятности.
Случайные события. Основные формулы комбинаторики
Классическое определение вероятности
Вероятностью события A в некотором испытании называют отношение:
P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A
Таким образом, вероятность любого события удовлетворяет двойному неравенству:
Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?
Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:
Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.
Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?
Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).
Геометрическое определение вероятности
Геометрическая вероятность события А определяется отношением:
P(A)= m(A)/m(G), где m(G) и m(A) — геометрические меры (длины, площади или объемы) всего пространства элементарных исходов G и события А соответственно
Чаще всего, в одномерном случае речь идет о длинах отрезков, в двумерном — о площадях фигур, а в трехмерном — об объемах тел.
Пример. Какова вероятность встречи с другом, если вы договорились встретиться в парке в промежутке с 12.00 до 13.00 и ждете друг друга 5 минут?
У нас есть отличные курсы по математике для учеников с 1 по 11 классы — приглашаем на вводный урок!
Сложение и умножение вероятностей
Теорема о сложении вероятностей звучит так: вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:
P(A + B) = P(A) + P(B)
Эта теорема справедлива для любого числа несовместных событий:
Если случайные события A1, A2. An образуют полную группу несовместных событий, то справедливо равенство:
Произведением событий А и В называется событие АВ, которое наступает тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.
Вторая теорема о сложении вероятностей: вероятность суммы совместных событий вычисляется по формуле:
P(A + B) = P(A) + P(B) − P(AB)
События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Теорема об умножении вероятностей: вероятность произведения независимых событий А и В вычисляется по формуле:
P(AB) = P(A) * P(B)
Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8.
Найдем вероятности того, что формула содержится:
А — формула содержится в первом справочнике;
В — формула содержится во втором справочнике;
С — формула содержится в третьем справочнике.
Воспользуемся теоремами сложения и умножения вероятностей.
Ответ: 1 — 0,188; 2 — 0,452; 3 — 0,336.
Формула полной вероятности и формула Байеса
По теореме умножения вероятностей:
Аналогично, для остальных гипотез:
Эта формула называется формулой Байеса. Вероятности гипотез называются апостериорными вероятностями, тогда как — априорными вероятностями.
Пример. Одного из трех стрелков вызывают на линию огня, он производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5; для третьего — 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.
Формула Бернулли
При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.
Примеры повторных испытаний:
Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.
Биномиальное распределение — распределение числа успехов (появлений события).
Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.
Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:
Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец🙂
Наивероятнейшее число успехов
Биномиальное распределение ( по схеме Бернулли) помогает узнать, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) выглядит так:
Пример. В очень большом секретном чатике сидит 730 человек. Вероятность того, что день рождения наугад взятого участника чата приходится на определенный день года — равна 1/365 для каждого из 365 дней. Найдем наиболее вероятное число счастливчиков, которые родились 1 января.
Формула Пуассона
При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно. Например, 0.97 999 вычислить весьма затруднительно.
В этом случае для вычисления вероятности того, что в n испытаниях событие произойдет k раз, используют формулу Пуассона:
Здесь λ = np обозначает среднее число появлений события в n испытаниях.
Эта формула дает удовлетворительное приближение для p ≤ 0,1 и np ≤10.
События, для которых применима формула Пуассона, называют редкими, так как вероятность, что они произойдут — очень мала (обычно порядка 0,001-0,0001).
При больших np рекомендуют применять формулы Лапласа, которую рассмотрим чуть позже.
Пример. В айфоне 1000 разных элементов, которые работают независимо друг от друга. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.
P1000(3) = λ 3 /3! * e −λ = 2 3 /3! * e −2 ≈ 0,18.
Ответ: ориентировочно 0,18.
Теоремы Муавра-Лапласа
Кроме того, пусть Pn(k1;k2) — вероятность того, что число появлений события А находится между k1 и k2.
Локальная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то
Интегральная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то
Функции Гаусса и Лапласа обладают свойствами, которые пригодятся, чтобы правильно пользоваться таблицей значений этих функций:
Теоремы Лапласа дают удовлетворительное приближение при npq ≥ 9. Причем чем ближе значения q, p к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность по сравнению с исходной формулой Бернулли.
Определение. Полной группой событий называется совокупность всех возможных результатов опыта.
Основные понятия.
Первичными в ТВ (теории вероятностей) являются понятия
· Опыт или испытание,
· Событие,
· Равновозможность событий.
Под опытом или испытанием будем понимать последовательность действий (осуществление комплекса условий), которые можно повторить сколько угодно раз.
Опыт: бросание игрального кубика; извлечение одной карты из колоды, ит.д.
Событием называется всякий факт, который может произойти или не произойти в результате опыта.
Обозначают события заглавными буквами с расшифровкой, например:
Событие А=выпало 4 очка при бросании кубика;
Событие В = извлечена карта пиковой масти.
События называются равновозможными, если нет оснований считать, что одно из них более возможно (появится в результате опыта с большей вероятностью), чем другое. В основе равновозможности событий лежат соображения симметрии и здравого смысла. Например, при бросании кубика выпадение 2 и 6 очков равновозможны, т.к. кубик однороден и симметричен, но при стрельбе по мишени попадание и промах нельзя, вообще говоря, считать равновозможными.
Тот или иной результат опыта может быть получен с различной степенью возможности. Т.е. в некоторых случаях можно сказать, что одно событие произойдет практически наверняка, другое практически никогда.
Определение. Достоверным событиемназывается событие, которое обязательно произойдет в результате опыта. Событие называется невозможным, если оно никогда не произойдет в результате опыта. Событие называется случайным, если в результате опыта оно может произойти, а может и не произойти.
Например, если из коробки, содержащей только красные и зеленые шары, наугад вынимают один шар, то появление среди вынутых шаров белого – невозможное событие, а появление красного шара – случайное событие.
В отношении друг друга события имеют некоторые особенности, т.е. в одном случае событие А может произойти совместно с событием В, в другом – нет.
Определение. События называются несовместными, если появление одного из них исключает появление других, в противном случае события называются совместными.
Классическим примером несовместных событий является результат подбрасывания монеты – выпадение лицевой стороны монеты исключает выпадение обратной стороны (в одном и том же опыте).
Определение. Полной группой событий называется совокупность всех возможных результатов опыта.
Определение. Элементарными исходами опыта называются такие результаты опыта, которые:
1. взаимно исключают друг друга (являются попарно несовместными);
2. являются равновозможными;
3. образуют полную группу событий (в результате опыта происходит одно из этих событий);
4. каково бы ни было событие А, по наступившему элементарному исходу можно судить о том, происходит или не происходит это событие.
Совокупность всех элементарных исходов опыта называется пространством элементарных событий.
Определение. Противоположными называются два несовместных события, образующие полную группу. Обозначают противоположные события Aи Ā
Определение. Исход опыта является благоприятствующим событию А, если появление в результате опыта этого исхода влечет за собой появление события А.
Пример: при бросании одного игрального кубика элементарными исходами будут события: «выпала 1», «выпала 2», «выпала 3», «выпала 4», «выпала 5», «выпала 6».
Для события А= выпало число очков, большее четырех, благоприятными будут события «выпала 5», «выпала 6».
§2.Классическое, статистическое и геометрическое определение вероятности события.
Подвероятностью события А понимается математическая (количественная) оценка возможности появления этого события в результате опыта.
Определение. (Классическое определение вероятности) Вероятность события Аравна отношению числа исходов опыта, благоприятствующих событию А, к общему числу попарно несовместных исходов опыта, образующих полную группу событий.
P(A) – вероятность события А
m – число исходов опыта, благоприятствующих событию А
n – общее число исходов опыта.
Очевидно, что для достоверного события m = n, для невозможного события m = 0,для случайного события 0
Дата добавления: 2016-05-25 ; просмотров: 1566 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ