Что называют подмножеством множества
Множества,их элементы,поджмножества
Вы будете перенаправлены на Автор24
В математике совокупности объектов, объединяющие ряд объектов называют множество. Данное понятие является первичным, значит, к более простым понятиям оно не сводится.
Термин множество употребляется тогда, когда речь идет о нечисловых множествах. Например, говорят о множестве диагоналей многоугольника, о множестве точек на координатной прямой, о множестве прямых, проходящих через точку.
Виды множеств
Множества могут быть конечными и бесконечными, пустыми.
Конечным называют множество, состоящее из конечного числа элементов, но при этом конечное множество может иметь любое количество элементов.
Среди конечных множеств выделяют множество, не имеющее ни одного элемента. Такое множество называется пустым множеством.
Множество, не являющееся конечным, называют бесконечным множеством.
Подмножества
Если некоторое множество не является пустым, то из него можно выделить другие множества, которые будут являться его частями.
Например, из множества натуральных чисел можно выделить множество четных.
Обозначение множеств, подмножеств и их элементов
Готовые работы на аналогичную тему
\[38\notin А, 74\notin А,934\notin А ; 12\in A,\ <\rm :\ >54\in A.\]
Способы задания множеств
Существует два глобально различных способа задания множеств.
Первый заключается в том, что множество задается указанием всех его элементов. В таком случае говорят, что множество задано перечислением всех своих элементов или списком своих элементов. Перечислением элементов можно задать только конечные множества и при небольшом количестве элементов, входящих в него
При таком способе задания множеств говорят, что множество задано перечислением его элементов.
Равенство множеств
Множества равны в том случае, если равны их элементы. При этом если множества состоят из одних и тех же элементов, но записанных в разном порядке то эти множества различны, хотя и равны.
Например, рассмотрим множества
Эти множества будут, состоят из равных элементов, значит, они будут равны, но при этом элементы расположены в разном порядке, т.е. множества различны
Пересечение множеств
Если даны два множества, то можно образовать новое множество, составленное из общих элементов этих множеств.
Например, рассмотрим два множества:
Объединение множеств
Математически это можно обозначить так:$\ А\ \cup B$
Разность множеств
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 27 05 2021
Множество и его элементы. Подмножества
Понятие множества
Что такое «множество», мы понимаем интуитивно. В этом смысле это понятие первично, так же как «точка» или «плоскость».
Создатель теории множеств Г.Кантор описывал множество как «многое, мыслимое нами как единое».
Приведём примеры множеств:
Множество людей в салоне самолёта
Множество деревьев в парке
Множество планет Солнечной системы
Множество электронов в атоме
Множество натуральных чисел
Множество «синих-синих презелёных красных шаров»
Конечное, бесконечное и пустое множества
Людей в салоне самолёта легко посчитать, это множество конечно.
С деревьями в парке, планетами и электронами – сложней. Скорее всего, мы не сможем назвать точное количество элементов этих множеств в данный момент времени. Однако, и эти множества конечны.
Натуральное число – это идеальный объект, абстракция. Множество натуральных чисел бесконечно. Как оказалось, человек может оперировать и абстракциями, и бесконечностями.
Можно себе представить даже то, «чего на свете вообще не может быть». Поскольку таких объектов нет, их множество будет пустым. Пустое множество является частью любого другого множества.
Помидоры на грядке
Числа (натуральные, рациональные, действительные и т.д.)
Количество рациональных чисел на отрезке [0;1]
Полосатые летающие слоны
Все точки пересечения двух параллельных прямых на плоскости
Способы задания множеств
1) Перечисление – в списке задаются все элементы множества.
Множество всех континентов Земли:
Множество букв слова «математика»:
Множество натуральных чисел меньших 5:
2) Характеристическое свойство – указывается особенность элементов множества.
D =
3) Графическое изображение – визуальное моделирование с помощью различных диаграмм (круги Эйлера, интервалы, графики и т.п.)
Подмножества
Говорят, что B содержит A, или B покрывает A.
Пустое множество является подмножеством любого множества.
Множество людей является подмножеством приматов, живущих на Земле.
Множество квадратов является подмножеством прямоугольников.
Множество всех подмножеств данного множества A называют булеаном или степенью множества A.
Примеры
Пример 1. Запишите данное множество с помощью перечисления элементов:
Задано множество целых чисел, квадрат которых меньше 5. Перечисляем:
Задано множество целых чисел, модуль которых не больше 3. Перечисляем:
Задано множество рациональных чисел, являющихся корнями уравнения
(x-1)(2x+5) = 0. Перечисляем:
Пример 2. Запишите данное множество с помощью характеристического свойства:
а) Множество всех натуральных чисел меньше 10
б) Множество всех действительных чисел, кроме 0
в) Множество всех точек с целыми координатами, принадлежащих прямой y = 2x+1
Пример 3. Изобразите на графике в координатной плоскости данное множество:
Задано конечное множество точек, которое можно представить перечислением:
Пример 4. Укажите и запишите с помощью перечисления одно из непустых конечных подмножеств для данного множества:
Как найти все подмножества множеств
На простом примере напомним, что называется подмножеством, какие бывают подмножества (собственные и несобственные), формулу нахождения числа всех подмножеств, а также калькулятор, который выдает множество всех подмножеств.
Пример 1. Дано множество А = <а, с, р, о>. Выпишите все подмножества
данного множества.
Решение:
Несобственные: <а, с, р, о>, Ø.
Всего: 16 подмножеств.
Пояснение. Множество A является подмножеством множества B если каждый элемент множества A содержится также в B.
• пустое множество ∅ является подмножеством любого множества, называется несобственным;
• любое множество является подмножеством самого себя, также называется несобственным;
• У любого n-элементного множества ровно 2 n подмножеств.
Последнее утверждение является формулой для нахождения числа всех подмножеств без перечисления каждого.
Для математиков сформулируем теорему и приведем строгое доказательство.
1. Для n = 1 (база индукции) (и даже для n = 2, 3) теорема доказана.
Следовательно, всех подмножеств множества B: 2 k + 2 k = 2 ⋅ 2 k = 2 k+1 штук.
Теорема доказана.
В примере 1 множество А = состоит из четырех элементов, n=4, следовательно, число всех подмножеств равно 2 4 =16.
Если вам необходимо выписать все подмножества, или составить программу для написания множества всех подмножеств, то имеется алгоритма для решения: представлять возможные комбинации в виде двоичных чисел. Поясним на примере.
Калькулятор множества всех подмножеств.
§1. Множества и операции над ними
Объяснение и обоснование
В курсах алгебры и алгебры и начал математического анализа чаще всего рассматривают множества, элементами которых являются числа, и поэтому их называют числовыми множествами.
Как правило, множества обозначают прописными буквами латинского алфавита. Например, если множество М состоит из чисел 1; 2; 3, то его обозначают так: М = <1; 2; 3>. Тот факт, что число 2 входит в это множество (является элементом данного множества М), записывается с помощью специального значка ∈ следующим образом: 2 ∈ М; а то, что число 5 не входит в это множество (не является элементом данного множества), записывается так: 5 ∉ М.
Можно рассматривать также множество, не содержащее ни одного элемента, — пустое множество.
Например: множество простых делителей числа 1 — пустое множество.
Для некоторых множеств существуют специальные обозначения. Так, пустое множество обозначается символом ∅, множество всех натуральных чисел — буквой N, множество всех целых чисел — буквой Z, множество всех рациональных чисел — буквой Q, а множество всех действительных чисел — буквой R.
Множества бывают конечными и бесконечными в зависимости от того, какое количество элементов они содержат. Так, множества А = <7>и M = <1; 2; 3>— конечные, потому что содержат конечное число элементов, а множества N, Z, Q, R — бесконечные.
Множества задают или с помощью перечисления их элементов (это можно сделать только для конечных множеств), или с помощью описания, когда задается правило (характеристическое свойство), которое позволяет определить, принадлежит или нет данный объект рассматриваемому множеству. Например, А = <–1; 0; 1>(множество задано перечислением элементов), B — множество всех четных целых чисел (множество задано характеристическим свойством всех элементов множества). Последнее множество иногда записывают так: B = или так: B = ∈ Z> — здесь после вертикальной черточки записано характеристическое свойство*.
В общем виде запись множества с помощью характеристического свойства можно обозначить так: A =
Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.
Из приведенного определения равенства множеств следует, что в множестве одинаковые элементы не различаются. Действительно, например, <1; 2; 2>= <1; 2>, поскольку каждый элемент первого множества (1 или 2) является элементом второго множества и, наоборот, каждый элемент второго множества (1 или 2) является элементом первого. Поэтому, записывая множество, чаще всего каждый его элемент записывают только один раз.
Если каждый элемент множества A является элементом множества B, то говорят, что множество A является подмножеством множества B.
Это записывают следующим образом: A ⊂ B.
Например, <1; 2>⊂ <0; 1; 2; 3>, N ⊂ Z (поскольку любое натуральное число — целое), Z ⊂ Q (поскольку любое целое число — рациональное), Q ⊂ R (поскольку любое рациональное число — действительное).
Полагают, что всегда ∅ ⊆ A, то есть пустое множество является подмножеством любого множества.
Иногда вместо записи A ⊂ B используется также запись A ⊆ B.
Сопоставим определение равенства множеств с определением подмножества. Если множества А и В равны, то: 1) каждый элемент множества А является элементом множества В, следовательно, А — подмножество В (A ⊆ B); 2) каждый элемент множества В является элементом множества А, следовательно, В — подмножество А (B ⊆ A). Таким образом,
два множества равны тогда и только тогда, когда каждое из них является подмножеством другого.
Иногда соотношения между множествами удобно иллюстрировать с помощью кругов (которые часто называют кругами Эйлера–Венна). Например, рисунок 1 иллюстрирует определение подмножества, а рисунок 2 — отношения между множествами N, Z, Q, R.
Множество. Элементы множества. Способы задания множества. Пустое множество. Подмножество.Операции над множествами.
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Тема урока: Множе ство. Э лементы множества . Способы задания множества. Пустое множество. Подмножество. Операции над множествами.
1.О рганизационный момент
3. Изучение нового материала
1.О рганизационный момент
Вступительное слово учителя
3. Изучение нового материала
Множество возникает путем объединения
отдельных предметов в единое целое.
Оно есть множественность мыслимая как единое.
Множество представляет собой объединение некоторых объектов или предметов в единую совокупность по каким-либо общим свойствам или законам. Обозначают А,В,Р,…
Предметы, составляющие данное множество, называются его элементами.
Например, множество дней недели состоит из элементов: понедельник, вторник, среда, четверг, пятница, суббота, воскресенье.
Множество месяцев – из элементов: январь, февраль, март, апрель, май, июнь, июль, август, сентябрь, октябрь, ноябрь, декабрь.
N – множество натуральных чисел,
Если каждый элемент множества В является элементом множества А, то множество В называется подмножеством множества А.
Пустое множество, по определению, считают подмножеством всякого множества. Обозначают Ø
При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов.
Перечислите множество фруктов
Перечислите множество овощей
Перечислите множество школьных предметов учеников 6 класса
Начертите три круга изображающие круги Эйлера. В самом маленьком круге напишите, те знания и умения которые вы приобрели в дошкольном возрасте (множества А), во втором круге – чем пополнились ваши знания в начальной школе (множества В) и в самом большом круге чему вы научились в 5-6 классах (множество С). В каком отношении находятся эти множества? (ответ А подмножества множества В и в – подмножества множества С)
1.Дано множество <11; 34; 60; 16; 90>. Принадлежит ли этому множеству число, которое получится при сложении 60 и 30, при вычитании 9 из 17, при делении 72 на 8, при вычитании И из 48, при умножении 20 на 3? [да; нет; нет; да; да].
2.По какому признаку составлено множество <зима, весна, лето, осень>, <11. 13, 15, 17, 19>? [времена года, [нечетные числа большие 10 и меньшие 20].
3.По какому признаку составлено множество <6,3,5,2,4>? [Множество чисел, больших 1 и меньших 7. Является ли это мно жество подмножеством натуральных чисел? [Да].
4.Назовите множество дней одной недели; множество месяцев одного года. Является ли множество дней одной недели подмно жеством множества дней одного месяца? [Да].
5.Даны следующие множества:
Перечислить буквы, обозначающие множества, так, чтобы каждая буква (кроме последней) обозначала подмножество следующего множества.
[ВА, СА, ДА, ЕА, ДС, ЕВ, ДЕ].
Указать, какие из данных множеств являются подмножествами других данных множеств.
7.Назовите множество натуральных чисел, расположенных между числами 21 и 22.
Часть 2. Решим ЗАДАЧУ № 1.
Однако один из любителей математики сказал: «Что ты, у нас есть ученики, которые не любят ни математику, ни литературу, ни исто рию. Я даже могу сказать, сколько их». Как он узнал?»
М — множество учащихся (кружковцев), увлекающихся мате матикой;
JI — множество учащихся (кружковцев), увлекающихся лите ратурой;
Из условия задачи следует, что все условия пересекаются.
Для составления схемы воспользуемся «кругами Эйлера».
Пересечение множеств М, JI и Д содержит 6 элементов (МЛИ|=6 это следует из условия задачи).
Пересечение множеств М и Л содержит 32 элемента (|MЛ|=32), но 6 элементов принадлежат множеству И (смотри рисунок).
Можно определить, сколько человек записать в кружки по мате матике и литературе (32-6=26 человек).
Пересечение множеств М и И содержит 11 элемента (|МИ|=11), но 6 элементов принадлежат множеству JI; следовательно в кружки по математике и истории записалось 11-6=5 человек.
ЛИ содержит 8 человек (|ЛИ|=8), но 6 элементов принадлежат множеству М, значит в кружки по литературе и истории записалось 8-6=2 человека.
Теперь легко определить сколько учащихся посещают только один кружок:
всего записалось — 14+6+9+26+5+6+2=68 человек;
По условию задачи все три множества пересекаются. Число эле ментов пересечения трёх множеств обозначим через X.
Пересечение множеств Б и П (БП) содержит 15 человек (|БП| = 15), но X человек принадлежат множеству Л. Можно определить, сколько человек занимаются баскетболом и плава нием: 15-Х (чел.).
Пересечение множеств JI и П (ЛП) содержит 18 человек (|ЛП|=18), но X человек принадлежат множеству Б. Можно определить, сколько человек занимаются лыжами и плаванием: 18-Х (чел.).
Пересечение множеств Б и JI (БЛ) содержит 16 человек (|БЛ|= 16), но X человек принадлежат множеству П. Можно определить, сколько человек занимаются баскетболом и лыжами: 16-Х (чел.).
Теперь легко определить, сколько учащихся занимаются только баскетболом:
Сколько учащихся занимаются только плаванием:
Сколько учащихся занимаются только лыжами:
По условию задачи известно, что в классе 40 человек и один чело век освобожден от занятий по физкультуре. Следовательно, можно составить уравнение:
Отсюда, Х= 10, т. е. 10 человек одновременно занимаются баскет болом, плаванием и лыжами.
26-(31-10)=5 (чел.) занимаются только баскетболом.
3 (чел.) занимаются только лыжами.
25-(33-10)=2 (чел.) занимаются только плаванием.
Из 40 учащихся класса выписывают газету, 21 – журнал, 15 учащихся – и газету и журнал. Сколько учащихся не выписывают ни журнала, ни газеты?
Ответ: 2 человека не выписывают ни газеты, ни журнала.
В классе 35 учеников. 20 человек посещают математический кружок, 11 – биологический. 10 человек не посещают кружков. Сколько биологов увлекается математикой?
Известно, что всего в кружках занимаются 25 человек. Следо вательно, можно составить уравнение:
Ответ: 6 биологов увлекаются математикой.
Из 100 человек 85 знают английский язык, 80 – испанский, 75 – немецкий. Все владеют по крайней мере одним иностранным языком. Среди них нет таких, которые знают только два иностранных языка, но есть владеющие тремя языками. Сколько человек знают три иностранных языка?
Ответ: 70 человек знают три иностранных языка.
Множество В является подмножеством множества А, если каждый элемент множества В является также элементом множества А. Пустое множество является подмножеством любого множества. Само множество является подмножеством самого себя. (пишут В ⊂ А)
Существует пять случаев отношений между двумя множествами. Их можно наглядно представить при помощи особых чертежей, которые называются кругами или диаграммами Эйлера-Венна.
Определение. Пересечением множеств А и В называется множество, содержащее все элементы, которые принадлежат множеству А и множеству В.
Пересечение множеств А и В обозначают А∩ В. Таким образом, по определению, А ∩ В = < х | х ∈ А и х ∈ В>.
Если изобразить множества А и В при помощи кругов Эйлера-Венна, то пересечением данных множеств является заштрихованная область (рис. 3).
Для пересечения множеств выполняются следующие свойства.
1) Переместительное или коммутативное свойство: А ∩ В = В ∩ А.
2 ) Сочетательное или ассоциативное свойство:(А ∩ В) ∩ С = А ∩ (В ∩ С).
3) А ∩ ∅ = ∅ (пустое множество является поглощающим элементом).
4) А ∩ U = А (универсальное множество является нейтральным элементом).
5) Если В ⊂ А, то А∩В = В
Определение. Объединением множеств А и В называется множество, содержащее все элементы, которые принадлежат множеству А или множеству В.
Объединение множеств А и В обозначают А ∪ В. Таким образом, по определению, А ∪ В = < х | х ∈ А или х ∈ В>.
Если изобразить А и В при помощи кругов Эйлера-Венна, то объединением данных множеств является заштрихованная область
Для объединения множеств выполняются следующие свойства.
1) Переместительное или коммутативное свойство: А ∪ В = В ∪ А.
2) Сочетательное или ассоциативное свойство:(А ∪ В) ∪ С = А ∪ (В ∪ С).
3) А ∪ ∅ = А (пустое множество является нейтральным элементом).
4) А ∪ U = U (универсальное множество является поглощающим элементом).
5) Если В ⊂ А, то А ∪ В = В
Операции объединения и пересечения множеств связаны законами дистрибутивности или иначе распределительными свойствами:
(А ∪ В) ∩С = (А∩С) ∪ (В∩С) и (А∩В) ∪ С = (А ∪ С) ∩(В ∪ С).
П р и м е р 1. Пусть А – множество различных букв в слове «математика», а В – множество различных букв в слове «стереометрия». Найти пересечение и объединение множеств А и В.
Р е ш е н и е. Запишем множества А и В, перечислив их элементы: А = < м, а, т, е, и, к >, В = < с, т, е, р, о, м, и, я >. Буквы м, т, е, и принадлежат и множеству А, и множеству В, поэтому они войдут в пересечение этих множеств: А∩В = < м, т, е, и >. В объединение этих множеств войдут все элементы множества А и несовпадающие с ними элементы из множества В: А ∪ В = < м, а, т, е, и, к, с, р, о, я >.
П р и м е р 2 . В классе английский язык изучают 25 человек, а немецкий – 27 человек, причем 18 человек изучают одновременно английский и немецкий языки. Сколько всего человек в классе изучают эти иностранные языки? Сколько человек изучают только английский язык? Только немецкий язык?
Р е ш е н и е. Через А обозначим множество школьников, изучающих английский язык, через В – множество школьников, изучающих немецкий язык. Изобразим эту ситуацию с помощью диаграммы. Два языка изучают 18 школьников, поставим это число в пересечение множеств А и В. Английский язык изучают 25 человек, но среди них 18 человек изучают и немецкий язык, значит, только английский язык изучают 7 человек, укажем это число на диаграмме. Рассуждая аналогично, получим, что только немецкий язык изучают 27 – 18 = 9 человек. Поместим и это число на диаграмму. Теперь известно количество элементов в каждой части множеств, изображенных на диаграмме. Чтобы ответить на главный вопрос задачи, нужно сложить все числа: 7 + 18 + 9 = 34. Ответ: 34 человека в классе изучают иностранные языки.
Определение. Разностью множеств А и В называется множество, содержащее те и только те элементы, которые принадлежат множеству А и не принадлежат множеству В.
Разность множеств А и В обозначают А \ В. Таким образом, по определению разности А \ В = < х | х ∈ А и х ∉ В>.
Если изобразить А и В при помощи кругов Эйлера-Венна, то разность данных множеств является заштрихованная область (рис. 5).
Определение. Пусть В является подмножеством множества А. В этом случае разность множеств А и В называют дополнением подмножества В до множества А и обозначают В’ А. Дополнение можно изобразить как показано на рис. 5. Если В – подмножество универсального множества U, то дополнение подмножества В до U обозначают В’.
Например, если В – множество однозначных натуральных чисел, то В’– множество неоднозначных натуральных чисел, если С – множество равнобедренных треугольников, то С’ – множество треугольников, у которых все стороны имеют разную длину.
Разность множеств и дополнение к подмножеству обладают рядом свойств.
1) (А \ В) \ С = (А \ С) \ В.
2) (А ∪ В) \ С = (А \ С) ∪ (В \ С).
3) (А \ В) ∩ С = (А ∩С) \ (В ∩ С).
Четвертое свойство формулируется так: дополнение к объединению двух множеств равно пересечению дополнений к этим множествам. Пятое свойство формулируется аналогично.
П р и м е р 1. А – множество натуральных чисел, кратных 3, В – множество натуральных чисел, кратных 5. Задать описанием характеристического свойства множество А \ В и назвать три числа, принадлежащих этому множеству.
Р е ш е н и е. По определению разность данных множеств состоит из натуральных чисел, кратных 3 и не кратных 5. Поэтому разности множеств А и В принадлежат числа 9, 24, 33.
Задания для самостоятельной работы по теме :
Приведите примеры множеств А, В, С, если отношения между ними таковы:
2. Образуйте все подмножества множества букв в слове «крот». Сколько подмножеств получилось?
5. Имеется множество блоков, различающихся по цвету (красные, желтые, зеленые), форме (круглые, треугольные, прямоугольные), размеру (большие, маленькие). На сколько классов разбивается множество, если в нем выделены подмножества: А – круглые блоки, В – зеленые блоки, С – маленькие блоки? Сделайте диаграмму Эйлера и охарактеризуйте каждый класс.
6. Известно, что А – множество спортсменов класса, В – множество отличников класса. Сформулируйте условия, при которых: а) А ∩В=Ø б)А U В=А
7. Пусть Х= < x N/ 1 x 15>. Задайте с помощью перечисления следующие его подмножества:
А – подмножество всех четных чисел;
В – подмножество всех нечетных чисел;
С – подмножество всех чисел, кратных 3;
D – подмножество всех чисел, являющихся квадратами;
E – подмножество всех простых чисел.
В каких отношениях они находятся?
Мне больше всего удалось…
Для меня было открытием то, что …
За что ты можешь себя похвалить?
Что на ваш взгляд не удалось? Почему? Что учесть на будущее?
Мои достижения на уроке.
Однако один из любителей математики сказал: «Что ты, у нас есть ученики, которые не любят ни математику, ни литературу, ни исто рию. Я даже могу сказать, сколько их». Как он узнал?»
Из 40 учащихся класса выписывают газету, 21 – журнал, 15 учащихся – и газету и журнал. Сколько учащихся не выписывают ни журнала, ни газеты?
В классе 35 учеников. 20 человек посещают математический кружок, 11 – биологический. 10 человек не посещают кружков. Сколько биологов увлекается математикой?
Из 100 человек 85 знают английский язык, 80 – испанский, 75 – немецкий. Все владеют по крайней мере одним иностранным языком. Среди них нет таких, которые знают только два иностранных языка, но есть владеющие тремя языками. Сколько человек знают три иностранных языка?