Что называют переходной характеристикой покажите ее вид для типовых звеньев
Переходные характеристики.
Переходная, или временная, характеристика (функция) звена представляет собой реакцию на выходе звена, вызванную подачей на его вход единичного ступенчатого воздействия. Единичное ступенчатое воздействие (единичная ступенчатая функция) – это воздействие, которое мгновенно возрастает от нуля до единицы и далее остается неизменным. Сказанное иллюстрируется на рис.2.6,а и б. На рис. 2.6,б показаны три различных вида переходных характеристик, соответствующих различным типам звеньев, которые мы рассмотрим далее.
Таким образом, h(t) – это выражение для y(t) при x(t) = 1(t).
Наряду с переходной характеристикой применяется импульсная переходная (временная)характеристика или функция, называемая еще весовой функцией (функцией веса). Эта характеристика представляет собой реакцию звена на единичный импульс. Единичный импульс (единичная импульсная функция, или дельта-функция) – это математическая идеализация предельно короткого импульсного сигнала. Единичный импульс – это импульс, площадь которого равна единице при длительности, равной нулю, и высоте, равной бесконечности. На рис.2.4,б он условно показан в виде утолщения на оси ординат. На рис. 2.7 изображены типичные формы самих импульсных переходных характеристик.
Импульсная переходная характеристика обозначается w(t); единичный импульс обозначается δ(t). Таким образом, w(t) – это y(t) при x(t) = δ(t).
При этом, согласно определению,
.
Дельта-функция просто связана с единичной ступенчатой функцией:
.
Из этого выражения следует аналогичная связь между переходной и весовой функциями линейных звеньев:
.
Учитывая это простое соотношение между переходной и весовой функциями, ниже будем применять главным образом первую из них, имея в виду, что вторую при необходимости всегда можно получить дифференцированием по формуле w(t) = h’(t).
Зная переходную или весовую функцию, можно определить реакцию звена на произвольное входное воздействие при нулевых начальных условиях с помощью следующих формул:
, (2.8)
где х(0) – значение х(t) при t = 0;
. (2.9)
Эти формулы легко получаются друг из друга, являясь вариантами интеграла Дюамеля, или интеграла свертки.
Переходные характеристики могут быть выражены непосредственно через передаточную функцию звена с помощью преобразования Лапласа над уравнением звена, записанным в общем виде согласно уравнению (2.3,а):
.
Считая начальные условия нулевыми и учитывая, что обе части этого уравнения представляют собой сумму производных с постоянными коэффициентами, получим:
.
Здесь — изображения Лапласа функций x(t) и y(t); Q(s) и R(s) – полиномы, отличающиеся от исходных полиномов Q(p) и R(p) только заменой оператора дифференцирования р на комплексную переменную s = c + jω. Отсюда
, (2.10)
где — передаточная функция звена (с заменой р на s).
В случае, когда входное воздействие x(t) представляет собой единичный импульс δ(t), учитывая, что его изображение по Лапласу , из (2.10) получаем следующее выражение для изображения весовой функции звена:
, (2.11)
.
Таким образом, весовая функция определяется через передаточную функцию по формуле обратного преобразования Лапласа, т.е. является ее оригиналом.
В случае, когда x(t) = 1(t), учитывая, что L[1(t)] = 1/s, из (2.10) получаем выражение для изображения переходной характеристики:
.
Соответственно переходная характеристика звена
.
Выражения (2.10) и (2.11) можно трактовать как определения передаточной функции. Согласно (2.10), передаточная функция определяется как отношение изображений Лапласа выходной и входной величин при нулевых начальных условиях. Согласно (2.11), передаточная функция есть изображение Лапласа весовой функции.
Основные параметры переходной функции:
Рис. 2.8. Переходная характеристика САУ.
§ статическое отклонение (статическая ошибка) ε = 1(t) – hуст. Она характеризует разность между входным и выходным сигналами в установившемся режиме. Системы, у которых статическое отклонение не равно нулю (ε <> 0) называются статическими. Системы, у которых ε = 0, называются астатическими.
§ Динамическое отклонение, т.е. разность между максимальным отклонением и установившемся значением hmax – hуст.
§ Время регулирования (управления) Tу – это время переходного процесса. Это время, после которого разность между текущим значение выходного сигнала и установившимся значением будет иметь малую величину Δ. Как правило, Δ принимают равным 5% от hуст.
Время регулирования характеризует быстродействие системы автоматического управления. Чем меньше Tу, тем выше быстродействие.
§ Перерегулирование σ, %. Определяется выражением:
(В реальных системах перерегулирование обычно составляет 10 – 30%).
§ Частота колебаний процесса ω = 2π/T0, где T0 – период колебаний.
§ Время нарастания (установления) Tн – время, за которое система достигает установившегося значения.
8.Логарифмические частотные характеристики САУ.
§ Логарифмический декремент затухания, определяется по формуле:
§ Число колебаний n – число максимумов h(t) на промежутке от 0 до Tу.
Функции 1(t) и δ(t) можно использовать для экспериментального определения передаточной функции элемента системы управления:
Первый подход: подадим на вход d * (t). Пусть d*(t) ≈ d(t) (т.к. d(t) физически не реализуема), измерим w * (t) ≈ w(t). Теперь можно вычислить L[w * (t)] = W * (s) ≈ W(s).
Второй подход: На вход подаем 1(t). Измеряем h(t) и вычисляем передаточную функцию. W(s) = L[d/dt(h(t)].
3. Частотные характеристики звеньев и систем автоматического управления. ч. 3.2 Простейшие типовые звенья
Лекции по курсу «Управление Техническими Системами» читает Козлов Олег Степанович на кафедре «Ядерные реакторы и энергетические установки» факультета «Энергомашиностроения» МГТУ им. Н.Э. Баумана. За что ему огромная благодарность!
Данные лекции готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется.
Тема сегодняшней статьи:
3.2. Типовые звенья систем автоматического управления (регулирования). Классификация типовых звеньев. Простейшие типовые звенья.
Хочешь вкусить плодов познания? — Грызи гранит науки!
Понятие “типовые звенья” в теории управления техническими системами, в основном, связано с описанием САУ (САР) в переменных “вход – выход”, т.е. описание систем в передаточных функциях. Любую линейную САУ (САР) или линеаризованную САР можно структурно расчленить на простейшие элементы (звенья), соединенные между собой соответствующими последовательными, параллельными связями, местными и локальными обратными связями, сумматорами, сравнивающими устройствами и т.д.
Достигнуто общепринятое соглашение, что наиболее удобно расчленять структурную схему САР на звенья 1-го и 2-го порядков. Принято называть такие простейшие звенья типовыми.
С другой стороны, реальная линеаризованная (линейная) система состоит из набора отдельных узлов и агрегатов, соединенных соответствующими связями, причем порядок уравнений динамики вышеуказанных узлов и агрегатов может быть и выше второго. В этом случае звенья (узлы и агрегаты) САР можно классифицировать по их свойствам.
Различают 3 типа звеньев:
Существуют также особые звенья, которые будут рассмотрены позднее.
Учитывая, что передаточная функция линейного (линеаризованного) звена может быть записана как:
где: и
— полиномы по степеням s, причем коэффициенты при низшей степени s в полиномах
,
равны 1, классификацию на типы звеньев можно объяснить видом полиномов
или (что эквивалентно) видом коэффициентов в соответствующих уравнениях динамики звена.
Подробнее о передаточной функции см. здесь.
Позиционным звеном считают звено, в котором полиномы N(s) и L(s) содержат свободные члены (равные 1). Например:
или в уравнении динамики (x(t) – входной сигнал, y(t) – выходной):
Из типовых звеньев (1-го и 2-го порядка) к позиционным звеньям относятся: идеальное усилительное звено, апериодические звенья 1-го и 2-го порядка, колебательное звено и форсирующее звено.
Дифференцирующим звеном считается звено, в котором полином L(s) содержит свободный член (равный 1), а полином N(s) не содержит свободного члена ().
Например:
или в уравнении динамики:
Из типовых звеньев к дифференцирующим звеньям относятся идеальное дифференцирующее звено, инерционно-дифференцирующее звено.
Интегрирующим звеном считается звено, в котором полином N(s) содержит свободный член (), а полином L(s), не содержит свободного члена (
). Например:
или в уравнении динамики:
Из типовых звеньев к интегрирующим звеньям относятся идеальное интегрирующее звено, инерционно–интегрирующее звено.
Пример переходного процесса при единичном ступенчатом воздействии на три разных звена, приведенных выше:
3.2.1. Идеальное усилительное звено
Уравнение динамики каждого звена имеет вид: , т.е. уравнение не является дифференциальным, следовательно, данное звено является безынерционным.
Переходя к изображениям , получаем:
– уравнение динамики звена в изображениях.
Передаточная функция идеального усилительного звена:
АФЧХ не зависит от ω, поскольку:
Рисунок 3.2.1 АФЧХ идеального усилительного звена
Годограф АФЧХ “вырождается” в точку: U(ω) =K; V(ω) =0;
A(ω) ≡modW(iω) =│W(iω)│=K =>
Lm(ω)=20lgA(ω) =20lgK; =>
φ(ω) = const = 0 т.е. фазового сдвига нет. Следовательно, данное звено является безынерционным, чисто усилительным звеном.
Рисунок 3.2.4 ЛАХ идеального усилительного звена
Найдем весовую w(t) и переходную h(t) функции звена (подробнее см. здесь).
Весовая функция:
3.2.2. Идеальное дифференцирующее звено
Уравнение динамики звена имеет вид:
где: – постоянная времени.
Переходя к изображениям:
Уравнение динамики звена в изображениях:
Передаточная функция идеального дифференцирующего звена:
Графики годографа АФЧХ, A(ω) и φ(ω) имеют вид:
Логарифмическая амплитудная характеристика ЛАХ::
Из рисунка 3.2.9 видно, что данное звено обеспечивает опережение по фазе на /2 (при любой частоте входного сигнала).
Чем выше частота единичного гармонического сигнала на входе в звено, тем выше амплитуда выходного сигнала в установившемся режиме.
Найдем весовую функцию звена:
Учитывая, что δ(t) имеет вид как на рис.3.2.11 (зависимость показана утрированно), а весовая функция пропорциональна производной от δ(t):
Найдем переходную функцию звена:
Иногда идеальное дифференцирующее звено представляется в виде или
. В последнем варианте коэффициент К имеет смысл постоянной времени.
3.2.3. Идеальное интегрирующее звено
Уравнение динамики такого звена имеет вид:
или в изображениях:
Передаточная функция идеального интегрирующего звена:
Умножая числитель и знаменатель на i, получаем:
Годограф АФЧХ имеет вид:
Данное звено всегда дает отставание по фазе на угол .
Найдем весовую функцию звена:
Найдем переходную функцию звена:
Примерами устройств, близких к идеальному усилительному звену, можно считать: широкополосный электронный усилитель (приближенно), механический редуктор без учета инерционности и нелинейных эффектов, жесткую механическую муфту и т.д.
Примером идеального дифференцирующего звена можно считать тахогенератор:
где u(t) – напряжение на клеммах тахогенератора, φ(t) – угол поворота якоря (ротора) тахогенератора.
Примером идеального интегрирующего звена можно считать большинство электродвигателей (без учета инерционности якоря), где входным воздействием считать напряжение в обмотке возбудителя (двигателем постоянного тока), а выходным воздействием – угол поворота выходного вала.
Пример интегрирующего и дифференцирующего звена на основе конденсатора
Один и тот же технический элемент, с точки зрения теории автоматического управления, может выступать как в качестве интегрирующего, так и в качестве дифференцирующего звена.
В качестве примера интегрирующего звена можно рассмотреть конденсатор, где входным воздействием является ток, а выходным результатом является напряжение на клеммах конденсатора. Действительно, при малом токе и большой емкости конденсатора, в случае ступенчатого изменения тока с 0, мы получаем график напряжения, совпадающий по форме с переходной функцией интегрирующего звена. На рисунке 3.2.20 представлена такая модель, где ток ступенькой меняется на пятой секунде расчета.
Тот же самый конденсатор, при определенных параметрах сети, может выступать в качестве идеального дифференцирующего звена, если в качестве входного воздействия подавать напряжение, а в качестве результирующей величины использовать ток в цепи.
Электрическая схема использования конденсатора в качестве дифференцирующего звена с гармоническим анализатором приведена на рисунке 3.2.22. На графиках гармонического анализатора видно, что угол наклона ЛАХ составляет 20 dB/dec, а угол сдвига фазы равен или 90 градусов на графике.
Примеры моделей, использованные в данной лекции, можно взять в этом архиве.