Что называют основанием и боковыми гранями тетраэдра

Тетраэдр

Урок 12. Геометрия 10 класс ФГОС

Что называют основанием и боковыми гранями тетраэдра

Что называют основанием и боковыми гранями тетраэдра

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Что называют основанием и боковыми гранями тетраэдра

Что называют основанием и боковыми гранями тетраэдра

Что называют основанием и боковыми гранями тетраэдра

Конспект урока «Тетраэдр»

В начале изучения курса «Стереометрии» мы говорили, что все геометрические тела делятся на тела вращения и многогранники. В процессе изучения геометрии в десятом классе, мы будем подробно рассматривать с вами свойства тех или иных фигур.

Сегодня мы познакомимся с такой фигурой как тетраэдр. Прежде чем приступить к изучению пространственной фигуры, давайте вернемся в планиметрию и вспомним такую фигуру как многоугольник.

Напомню, что многоугольником называется либо замкнутая линия без самопересечений либо часть плоскости, ограниченная этой линией, включая ее саму.

Что называют основанием и боковыми гранями тетраэдра

Для стереометрии нам естественно подходит второе определение. Это определение показывает, что каждый многоугольник представляет собой плоскую поверхность.

Напомним, что простейшим многоугольником является треугольник. Возьмем треугольник ABC и точку D, которая не лежит в плоскости треугольника ABC. Соединим точку D с каждой вершиной треугольника ABC. Таким образом, мы получим три новых треугольника DAB, DBC, DCA. Тогда фигуру, которая состоит из четырех треугольников ABC, DAB, DBC, DCA, называют тетраэдром и обозначают так: DABC.

Треугольники, из которых состоит тетраэдр, называются гранями, стороны этих треугольников называют ребрами, вершины этих треугольников называются вершинами тетраэдра.

Что называют основанием и боковыми гранями тетраэдра

Нетрудно посчитать, что тетраэдр имеет четыре грани, 6 ребер и четыре вершины. Два ребра тетраэдра, которые не имеют общих вершин, называются противоположными. Давайте запишем пары противоположных ребер тетраэдра, который изображен на рисунке.

Это будут ребра AD и BC, BDи AC, CD и AB. Иногда одну из граней тетраэдра называют основанием, а три другие – боковыми гранями.

Слово тетраэдр произошло от древнегреческих слов теторес – четыре и эдра – основание или грань.

Если все грани тетраэдра – равносторонние треугольники, то такой тетраэдр называется правильным. Правильный тетраэдр является одним из пяти правильных многогранников. Они еще называются телами Платона. Это — тетраэдр, гранями которого являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр, имеющий восемь треугольных граней, додекаэдр, гранями которого являются двенадцать правильных пятиугольников, и икосаэдр с двадцатью треугольными гранями.

Последователи Пифагорейской философской школы форму тетраэдра придавали стихии огня.

Тетраэдр, все грани которого равные между собой треугольники, называется равногранным тетраэдром.

Что называют основанием и боковыми гранями тетраэдра

Если ребра тетраэдра, которые прилегают к одной вершине, перпендикулярны между собой, то такой тетраэдр называется прямоугольным.

Что называют основанием и боковыми гранями тетраэдра

Тетраэдры обычно изображаются в виде выпуклого или невыпуклого четырехугольника с диагоналями. При этом штриховыми линиями изображаются невидимые ребра.

На этом рисунке невидимым является только ребро AC.

Что называют основанием и боковыми гранями тетраэдра

А на этом рисунке невидимыми являются ребра ЕК, KF, KL.

Что называют основанием и боковыми гранями тетраэдра

Тетраэдр образует жёсткую, статически определимую конструкцию. Тетраэдр, выполненный из стержней, часто используется в качестве основы для пространственных несущих конструкций пролётов зданий, перекрытий, балок, ферм, мостов.

Ярким примером тетраэдра является разработанное для Нового Орлеана «здание-город», которое возвышается на 360 метров, включает в себя 20000 квартир, суммарная жилая площадь которых 2040000 квадратных метров. Здание использует экологичное энергоснабжение — энергию ветра, воды и солнца. Кроме квартир в тетраэдре помещаются коммерческие организации, три отеля, культурные объекты, школа, больницы и казино. И, учитывая место, под которое создавался проект, его немаловажная особенность — способность держаться на плаву.

Что называют основанием и боковыми гранями тетраэдра

Решим насколько задач.

Задача. Назовите все пары скрещивающихся рёбер тетраэдра Что называют основанием и боковыми гранями тетраэдра. Сколько таких пар рёбер имеет тетраэдр?

Напомним, что две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Что называют основанием и боковыми гранями тетраэдра

Нетрудно увидеть, что скрещивающимися будут ребра AB и СD, АC и BD, АD и BC. То есть в тетраэдре есть три пары скрещивающихся ребер.

Задача. В тетраэдре Что называют основанием и боковыми гранями тетраэдраЧто называют основанием и боковыми гранями тетраэдра, Что называют основанием и боковыми гранями тетраэдра, Что называют основанием и боковыми гранями тетраэдра, Что называют основанием и боковыми гранями тетраэдра, Что называют основанием и боковыми гранями тетраэдра, Что называют основанием и боковыми гранями тетраэдра. Найти рёбра основания Что называют основанием и боковыми гранями тетраэдраданного тетраэдра.

Что называют основанием и боковыми гранями тетраэдра

Что называют основанием и боковыми гранями тетраэдра

Задача. Пусть точки Что называют основанием и боковыми гранями тетраэдраи Что называют основанием и боковыми гранями тетраэдра– середины рёбер Что называют основанием и боковыми гранями тетраэдраи Что называют основанием и боковыми гранями тетраэдратетраэдра Что называют основанием и боковыми гранями тетраэдра. Доказать, что прямая Что называют основанием и боковыми гранями тетраэдрапараллельна плоскости Что называют основанием и боковыми гранями тетраэдра.

Что называют основанием и боковыми гранями тетраэдра

Что называют основанием и боковыми гранями тетраэдра

Что и требовалось доказать.

Подведем итоги урока. Сегодня на уроке мы познакомились с пространственным многогранником – тетраэдром. Познакомились с элементами тетраэдра, решили несколько задач по данной теме.

Источник

Тетраэдр.

Тетраэдр — правильный многогранник (четырёхгранный), имеющий 4 грани, они, в свою очередь, оказываются правильными треугольниками. У тетраэдра 4 вершины, к каждой из них сходится 3 ребра. Общее количество ребер у тетраэдра 6.

Что называют основанием и боковыми гранями тетраэдраЧто называют основанием и боковыми гранями тетраэдра

Свойства тетраэдра.

Параллельные плоскости, которые проходят через пары рёбер тетраэдра, что скрещиваются, и определяют описанный параллелепипед около тетраэдра.

Плоскость, которая проходит сквозь середины 2-х рёбер тетраэдра, что скрещиваются, и делит его на 2 части, одинаковые по объему.

Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, если считать от вершины. Она же делит бимедианы на две равные части.

Типы тетраэдров.

У правильного тетраэдра каждый двугранный угол при рёбрах и каждый трёхгранный угол при вершинах имеют одинаковую величину.

Тетраэдр состоит из 4 граней, 4 вершин и 6 ребер.

Кроме правильного тетраэдра, заслуживают внимания такие типы тетраэдров:

Равногранный тетраэдр, у него каждая грань представляет собой треугольник. Все грани-треугольники такого тетраэдра равны.

Ортоцентрический тетраэдр, у него каждая высота, опущенная из вершин на противоположную грань, пересекается с остальными в одной точке.

Прямоугольный тетраэдр, у него каждое ребро, прилежащее к одной из вершин, перпендикулярно другим ребрам, прилежащим к этой же вершине.

Каркасный тетраэдр — тетраэдр, который таким условиям:

Соразмерный тетраэдр, бивысоты у него одинаковы.

Инцентрический тетраэдр, у него отрезки, которые соединяют вершины тетраэдра с центрами окружностей, которые вписаны в противоположные грани, пересекаются в одной точке.

Формулы для определения элементов тетраэдра.

Высота тетраэдра:

Что называют основанием и боковыми гранями тетраэдра

Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.

Что называют основанием и боковыми гранями тетраэдра

Основные формулы для правильного тетраэдра:

Что называют основанием и боковыми гранями тетраэдра

Источник

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок №7. Тетраэдр и параллелепипед

Перечень вопросов, рассматриваемых в теме

Тетраэдр – это многогранник, состоящий из плоскости треугольника и точки не лежащий в этой плоскости, трех отрезков соединяющих эту точку с вершинами основания треугольника.

Четырёхугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.

Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда.

Сечением поверхности геометрических тел называется – плоская фигура, полученная в результате пересечения тела плоскостью и содержащая точки, принадлежащие как поверхности тела, так и секущей плоскости.

Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Учебник Геометрия 10-11 кл.– М.: Просвещение, 2014.

Зив Б.Г. Дидактические материалы Геометрия 10 кл.– М.: Просвещение, 2014.

Глазков Ю.А., Юдина И.И., Бутузов В.Ф. Рабочая тетрадь Геометрия 10 кл.-М.: Просвещение, 2013.

Открытый электронный ресурс:

Решу ЕГЭ. Открытый образовательный портал. https://ege.sdamgia.ru

Теоретический материал для самостоятельного изучения

В дельнейшем несколько уроков нашего курса будет посвящены многогранникам- поверхностям геометрических тел, составленным из многоугольников. Но до более подробного изучения многогранников мы познакомимся с двумя из них- тетраэдром и параллелепипедом. Нам данные тела дадут возможность проиллюстрировать понятия, связанные со взаимным расположением прямых и плоскостей.

Давайте вспомним, что мы понимали под многоугольником в планиметрии. Многоугольник мы рассматривали либо как замкнутую линию без самопересечений, либо как часть плоскости, ограниченную этой линией, включая ее саму.

Мы будем использовать второе толкование многоугольника при рассмотрении поверхностей и тел в пространстве. При таком толковании любой многоугольник в пространстве представляет собой плоскую поверхность.

Давайте рассмотрим изображенную фигуру и ответим на несколько вопросов.

Итак, поверхность данной фигуры состоит из четырёх треугольников DАВ, DВС, DАС и АВС.

Мы с вами выяснили из элементов состоит наша фигура тетраэдр. Теперь сформулируем определение.

Определение. Тетраэдр – это многогранник, состоящий из плоскости треугольника и точки не лежащий в этой плоскости, трех отрезков соединяющих эту точку с вершинами основания треугольника.

Говорят, что рёбра АD и ВС, АВ и CD, и т.д.- противоположные.

Изображается тетраэдр обычно так (рис. 1).

Что называют основанием и боковыми гранями тетраэдра

Рисунок 1 – изображение тетраэдра.

Математика, в частности геометрия, является мощнейшим инструментом в познании мира. Различные геометрические формы находят свое практическое приспособление в различных областях знания: архитектуре, скульптуре, живописи. И тетраэдр тому доказательство. Так же мы можем наблюдать тетраэдр в повседневной жизни (рис. 2).

Форма пакета молока

Что называют основанием и боковыми гранями тетраэдра

Что называют основанием и боковыми гранями тетраэдра

Что называют основанием и боковыми гранями тетраэдра

Прежде чем начать изучать параллелепипед вспомним определение параллелограмма и его свойства.

Определение. Четырёхугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом (рис. 3).

Что называют основанием и боковыми гранями тетраэдра

Рисунок 3 – параллелограмм

1. Противоположные стороны параллелограмма равны:

Что называют основанием и боковыми гранями тетраэдра

2. Противоположные углы параллелограмма равны:

Что называют основанием и боковыми гранями тетраэдра

3. Диагонали параллелограмма точкой пересечения делятся пополам:

Что называют основанием и боковыми гранями тетраэдра

треугольники ABC и CDA равны.

Что называют основанием и боковыми гранями тетраэдра

Что называют основанием и боковыми гранями тетраэдра

6. Накрест лежащие углы при диагонали равны:

Что называют основанием и боковыми гранями тетраэдра

А теперь перейдем к параллелепипеду.

Рассмотрим два равных параллелограмма ABCD и A1B1C1D1, расположенных в параллельных плоскостях так, что отрезки AA1, BB1, CC1 и DD1 параллельны.

Давайте рассмотрим изображенную фигуру (рис. 4).

Что называют основанием и боковыми гранями тетраэдра

Рисунок 4 – параллелепипед и его диагонали

АВСDA1B1C1D1: поверхность, составленная из двух равных параллелограммов АВСD и A1B1C1D1, лежащих в параллельных плоскостях и четырёх параллелограммов.

Определение. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда:
A1C, D1B, AC1, DB1.

Параллелепипед – слово греческого происхождения, параллел – идущий рядом, епипед – плоскость.

Определение.Параллелепипед- этошестигранник с параллельными и равными противоположными гранями.

Следует отметить, что многоугольник в пространстве представляет собой плоскую поверхность, а тетраэдр и параллелепипед – поверхности, составленные из плоских поверхностей (соответственно треугольников и параллелограммов).

Способы изображения параллелепипеда

Параллелепипед, в основании которого лежит ромб

Что называют основанием и боковыми гранями тетраэдра

Параллелепипед, в основании которого лежит квадрат

Что называют основанием и боковыми гранями тетраэдраЧто называют основанием и боковыми гранями тетраэдра

Параллелепипед,в основании которого лежит прямоугольник или параллелограмм

Что называют основанием и боковыми гранями тетраэдра

Параллелепипед, у которого все грани — равные квадраты

Что называют основанием и боковыми гранями тетраэдра

Можно сделать вывод, что параллелепипеды делятся на (рис. 5)

Что называют основанием и боковыми гранями тетраэдра

Рисунок 5 – виды параллелепипедов

В параллелепипеде ABCDA1B1C1D1грани ВВ1С1С и AA1D1D параллельны (рис. 6), потому что две пересекающиеся прямые ВВ1 и В1С1 одной грани параллельны двум пересекающимся прямым АА1 и A1D1 другой; эти грани и равны, так как В1С1 = A1D1, В1В= А1А (как противоположные стороны параллелограммов) и ∟ ВВ1С1= ∟АA1D1.

Что называют основанием и боковыми гранями тетраэдра

Рисунок 6 – чертеж к доказательству свойства 1

Возьмём какие-нибудь две диагонали, например АС1 и ВD1, и проведём вспомогательные прямые АD1 и ВС1 (рис. 7).

Так как рёбра АВ и D1С1 соответственно равны и параллельны ребру DС, то они равны и параллельны между собой; вследствие этого фигура АD1С1В есть параллелограмм, в котором прямые С1А и ВD1 —диагонали, а в параллелограмме диагонали делятся в точке пересечения пополам.

Возьмём теперь одну из этих диагоналей, например АС1, с третьей диагональю, положим, с В1D. Совершенно так же мы можем доказать, что они делятся в точке пересечения пополам. Следовательно, диагонали B1D и АС1 и диагонали АС1 и BD1(которые мы раньше брали) пересекаются в одной и той же точке, именно в середине диагонали
АС1. Наконец, взяв эту же диагональ АС1 с четвёртой диагональю А1С, мы также докажем, что они делятся пополам. Значит, точка пересечения и этой пары диагоналей лежит в середине диагонали АС1. Таким образом, все четыре диагонали параллелепипеда пересекаются в одной и той же точке и делятся этой точкой пополам.

Что называют основанием и боковыми гранями тетраэдра

Рисунок 7 – чертеж к доказательству свойства 2

Задачи на построение сечений.

Взаимное расположение многогранника и секущей плоскости:

Что называют основанием и боковыми гранями тетраэдра

Фигуры, которые получаются в результате сечения:

Что называют основанием и боковыми гранями тетраэдра

Что называют основанием и боковыми гранями тетраэдра

Один из методов построения сечений, который мы рассмотрим- метод следа.

Рассмотрим метод следов, применяемый при построении сечений многогранников, а именно при построении сечения куба плоскостью.

Что такое метод следов? При построении сечений многогранников в качестве вспомогательной прямой часто используется след секущей плоскости (в плоскости грани, удобной для рассмотрения). Такой метод построения сечений называется методом следа.

Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки P, Q, R (рис. 8).

Что называют основанием и боковыми гранями тетраэдра

Рисунок 8 –чертеж к задаче №1

Основные правила построения сечений методом следа:

То есть, суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры.

Дан тетраэдр АВСD. Точка М – точка внутренняя, точка грани тетраэдра АВD. N – внутренняя точка отрезка DС. Построить точку пересечения прямой NM и плоскости АВС.

Что называют основанием и боковыми гранями тетраэдра

Рисунок 9 – чертеж к задаче №2

Решение:
Для решения построим вспомогательную плоскость DМN (рис. 10). Пусть прямая DМ пересекает прямую АВ в точке К. Тогда, СКD – это сечение плоскости DМN и тетраэдра. В плоскости DМN лежит и прямая NM, и полученная прямая СК. Значит, если NM не параллельна СК, то они пересекутся в некоторой точке Р. Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС.

Примеры и разбор решения заданий тренировочного модуля

Дан тетраэдр АВСD. М – внутренняя точка грани АВD. Р – внутренняя точка грани АВС. N – внутренняя точка ребра DС. Построить сечение тетраэдра плоскостью, проходящей через точки М, N и Р.

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС (рис. 11). В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС. Это точка К, она получена с помощью вспомогательной плоскости DМN, т.е. мы проводим DМ и получаем точку F. Проводим СF и на пересечении MN получаем точку К.

Проведем прямую КР. Прямая КР лежит и в плоскости сечения, и в плоскости АВС. Получаем точки Р1 и Р2. Соединяем Р1 и М и на продолжении получаем точку М1. Соединяем точку Р2 и N. В результате получаем искомое сечение Р1Р2NМ1. Задача в первом случае решена.

Что называют основанием и боковыми гранями тетраэдра

Рисунок 10 – чертеж к примеру 1 (первый случай)

Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС (рис. 12). Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р1Р2, тогда прямая Р1Р2 параллельна данной прямой MN.

Что называют основанием и боковыми гранями тетраэдра

Рисунок 11 – чертеж к примеру 1 (второй случай)

Через середины ребер АВ и ВС тетраэдра SABC проведена плоскость параллельно ребру SB. Докажите, что эта плоскость пересекает грани SAB и SBC по параллельным прямым.

Плоскость SBC и плоскость, проходящая через прямую MN параллельно ребру SB, пересекаются по прямой, проходящей через точку N (рис. 13).
По теореме (о параллельных прямых) линия пересечения параллельна SB.
В плоскость SBC через т. N проходит NQ||SB.
Плоскость SAB и плоскость MNQ пересекаются по прямой, проходящей через т. M (прямая MP). По теореме (о параллельных прямых) линия пересечения параллельна SB.

Что называют основанием и боковыми гранями тетраэдраследовательно, PM||NQ.Утверждение доказано.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *