Что называют определителем матрицы
Определитель матрицы и его свойства
Помню, класса до 8-го мне не нравилась алгебра. Вообще не нравилась. Бесила она меня. Потому что я там ничего не понимал.
А затем всё изменилось, потому что я просёк одну фишку:
В математике вообще (и алгебре в частности) всё строится на грамотной и последовательной системе определений. Знаешь определения, понимаешь их суть — разобраться в остальном не составит труда.
Вот так и с темой сегодняшнего урока. Мы детально рассмотрим несколько смежных вопросов и определений, благодаря чему вы раз и навсегда разберётесь и с матрицами, и с определителями, и со всеми их свойствами.
Определители — центральное понятие в алгебре матриц. Подобно формулам сокращённого умножения, они будут преследовать вас на протяжении всего курса высшей математики. Поэтому читаем, смотрим и разбираемся досконально.:)
И начнём мы с самого сокровенного — а что такое матрица? И как правильно с ней работать.
Правильная расстановка индексов в матрице
Матрица — это просто таблица, заполненная числами. Нео тут ни при чём.
\[A=\left[ m\times n \right]\]
Какой индекс за что отвечает? Сначала идёт номер строки, затем — столбца? Или наоборот?
При чтении лекций и учебников ответ будет казаться очевидным. Но когда на экзамене перед вами — только листик с задачей, можно переволноваться и внезапно запутаться.
Поэтому давайте разберёмся с этим вопросом раз и навсегда. Для начала вспомним обычную систему координат из школьного курса математики:
Введение системы координат на плоскости
А теперь давайте возьмём эту конструкцию и поставим её рядом с матрицей так, чтобы начало координат находилось в левом верхнем углу. Почему именно там? Да потому что открывая книгу, мы начинаем читать именно с левого верхнего угла страницы — запомнить это легче лёгкого.
Но куда направить оси? Мы направим их так, чтобы вся наша виртуальная «страница» была охвачена этими осями. Правда, для этого придётся повернуть нашу систему координат. Единственно возможный вариант такого расположения:
Наложение системы координат на матрицу
Определение индексов в матрице
Просто всмотритесь в эту картинку внимательно. Поиграйтесь с координатами (особенно когда будете работать с настоящими матрицами и определителями) — и очень скоро поймёте, что даже в самых сложных теоремах и определениях вы прекрасно понимаете, о чём идёт речь.
Разобрались? Что ж, переходим к первому шагу просветления — геометрическому определению определителя.:)
Геометрическое определение
Ну и что это за характеристика? Что он означает? Всё просто:
Например, определитель матрицы размера 2×2 — это просто площадь параллелограмма, а для матрицы 3×3 это уже объём 3-мерного параллелепипеда — того самого, который так бесит всех старшеклассников на уроках стереометрии.
На первый взгляд это определение может показаться совершенно неадекватным. Но давайте не будем спешить с выводами — глянем на примеры. На самом деле всё элементарно, Ватсон:
Задача. Найдите определители матриц:
Решение. Первые два определителя имеют размер 2×2. Значит, это просто площади параллелограммов. Начертим их и посчитаем площадь.
Определитель 2×2 — это площадь параллелограмма
Очевидно, это не просто параллелограмм, а вполне себе прямоугольник. Его площадь равна
Ещё один определитель 2×2
Стороны этого прямоугольника (по сути — длины векторов) легко считаются по теореме Пифагора:
Осталось разобраться с последним определителем — там уже матрица 3×3. Придётся вспоминать стереометрию:
Определитель 3×3 — это объём параллелепипеда
Выглядит мозговыносяще, но по факту достаточно вспомнить формулу объёма параллелепипеда:
Площадь параллелограмма (мы начертили его отдельно) тоже считается легко:
Вот и всё! Записываем ответы.
Небольшое замечание по поводу системы обозначений. Кому-то наверняка не понравится, что я игнорирую «стрелочки» над векторами. Якобы так можно спутать вектор с точкой или ещё с чем.
Но давайте серьёзно: мы с вами уже взрослые мальчики и девочки, поэтому из контекста прекрасно понимаем, когда речь идёт о векторе, а когда — о точке. Стрелки лишь засоряют повествование, и без того под завязку напичканное математическими формулами.
И ещё. В принципе, ничто не мешает рассмотреть и определитель матрицы 1×1 — такая матрица представляет собой просто одну клетку, а число, записанное в этой клетке, и будет определителем. Но тут есть важное замечание:
В отличие от классического объёма, определитель даст нам так называемый «ориентированный объём», т.е. объём с учётом последовательности рассмотрения векторов-строк.
И если вы хотите получить объём в классическом смысле этого слова, придётся взять модуль определителя, но сейчас не стоит париться об этом — всё равно через несколько секунд мы научимся считать любой определитель с любыми знаками, размерами и т.д.:)
Алгебраическое определение
При всей красоте и наглядности геометрического подхода у него есть серьёзный недостаток: он ничего не говорит нам о том, как этот самый определитель считать.
Поэтому сейчас мы разберём альтернативное определение — алгебраическое. Для этого нам потребуется краткая теоретическая подготовка, зато на выходе мы получим инструмент, позволяющий считать в матрицах что и как угодно.
Правда, там появится новая проблема. но обо всём по порядку.
Перестановки и инверсии
Теперь (чисто по приколу) поменяем парочку чисел местами. Можно поменять соседние:
А можно — не особо соседние:
И знаете, что? А ничего! В алгебре эта хрень называется перестановкой. И у неё есть куча свойств.
Далее для простоты изложения будем работать с перестановками длины 5 — они уже достаточно серьёзны для наблюдения всяких подозрительных эффектов, но ещё не настолько суровы для неокрепшего мозга, как перестановки длины 6 и более. Вот примеры таких перестановок:
\[n!=5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120\]
Одной из ключевых характеристик всякой перестановки является количество инверсий в ней.
\[\left( 4;3 \right);\left( 4;2 \right);\left( 5;3 \right);\left( 5;2 \right);\left( 3;2 \right).\]
Что такое определитель
Принципиальным моментом при выборе множителей для каждого слагаемого в определителе является тот факт, что никакие два множителя не стоят в одной строчке или в одном столбце.
\[j=p\left( i \right),\quad i=1,2. n\]
От перестановки множителей произведение чисел не меняется.
Вот только не надо приплетать это правило к умножению матриц — в отличие от умножения чисел, оно не коммутативно. Но это я отвлёкся.:)
Матрица 2×2
Вообще-то можно рассмотреть и матрицу 1×1 — это будет одна клетка, и её определитель, как нетрудно догадаться, равен числу, записанному в этой клетке. Ничего интересного.
Поэтому давайте рассмотрим квадратную матрицу размером 2×2:
Рассмотрим пару примеров:
Решение. Всё считается в одну строчку. Первая матрица:
\[5\cdot 9-8\cdot 6=45-48=-3\]
\[7\cdot 1-14\cdot 12=7-168=-161\]
Впрочем, это было слишком просто. Давайте рассмотрим матрицы 3×3 — там уже интересно.
Матрица 3×3
Теперь рассмотрим квадратную матрицу размера 3×3:
\[\begin _<1>>=\left( 1;2;3 \right)\Rightarrow N\left( < _<1>> \right)=N\left( 1;2;3 \right)=0; \\ & < _<2>>=\left( 1;3;2 \right)\Rightarrow N\left( < _<2>> \right)=N\left( 1;3;2 \right)=1; \\ & < _<3>>=\left( 2;1;3 \right)\Rightarrow N\left( < _<3>> \right)=N\left( 2;1;3 \right)=1; \\ & < _<4>>=\left( 2;3;1 \right)\Rightarrow N\left( < _<4>> \right)=N\left( 2;3;1 \right)=2; \\ & < _<5>>=\left( 3;1;2 \right)\Rightarrow N\left( < _<5>> \right)=N\left( 3;1;2 \right)=2; \\ & < _<6>>=\left( 3;2;1 \right)\Rightarrow N\left( < _<6>> \right)=N\left( 3;2;1 \right)=3. \\\end Вот только не надо сейчас садиться и яростно зубрить все эти индексы! Вместо непонятных цифр лучше запомните следующее мнемоническое правило: . Для нахождения определителя матрицы 3×3 нужно сложить три произведения элементов, стоящих на главной диагонали и в вершинах равнобедренных треугольников со стороной, параллельной этой диагонали, а затем вычесть такие же три произведения, но на побочной диагонали. Схематически это выглядит так: Определитель матрицы 3×3: правило треугольников Именно эти треугольники (или пентаграммы — кому как больше нравится) любят рисовать во всяких учебниках и методичках по алгебре. Впрочем, не будем о грустном. Давайте лучше посчитаем один такой определитель — для разминки перед настоящей жестью.:) \[\left| \begin Решение. Работаем по правилу треугольников. Сначала посчитаем три слагаемых, составленных из элементов на главной диагонали и параллельно ей: \[\begin Теперь разбираемся с побочной диагональю: \[\begin Осталось лишь вычесть из первого числа второе — и мы получим ответ: Тем не менее, определители матриц 3×3 — это ещё не вершина мастерства. Самое интересное ждёт нас дальше.:) Уже для матриц 4×4 считать определители напролом (т.е. через перестановки) становится как-то не оч. Про 5×5 и более вообще молчу. Поэтому к делу подключаются некоторые свойства определителя, но для их понимания нужна небольшая теоретическая подготовка. Есть и другое определение. Возможно, кому-то оно больше придётся по душе: Как говорил мой кот, иногда лучше Выбирая строку 1 и столбец 2, получаем минор первого порядка: Выбирая строки 2, 3 и столбцы 3, 4, получаем минор второго порядка: А если выбрать все три строки, а также столбцы 1, 2, 4, будет минор третьего порядка: \[< Считать этот определитель мне уже в лом. Но он равен 53.:) Читателю не составит труда найти и другие миноры порядков 1, 2 или 3. Поэтому идём дальше. «Ну ok, и что дают нам эти Уточним один момент: дополнительный минор — это не просто «кусок матрицы», а определитель этого куска. Дополнительные миноры редко используются сами по себе. Они являются частью более сложной конструкции — алгебраического дополнения. Сложно? На первый взгляд — да. Но это не точно. Потому что на самом деле всё легко. Рассмотрим пример: \[A=\left[ \begin Выберем минор второго порядка Капитан Очевидность как бы намекает нам, что при составлении этого минора были задействованы строки 1 и 4, а также столбцы 3 и 4. Вычёркиваем их — получим дополнительный минор: Вот и всё! По сути, всё различие между дополнительным минором и алгебраическим дополнением — только в минусе спереди, да и то не всегда. Наша задача сейчас — научиться быстро считать алгебраические дополнения, потому что они являются составной частью «Теоремы, Которую Нельзя Называть». Но мы всё же назовём. Встречайте: И вот мы пришли к тому, зачем, собственно, все эти миноры и алгебраические дополнения были нужны. Мы не будем её доказывать, хоть это и не представляет особой трудности — все выкладки сводятся к старым-добрым перестановкам и чётности/ нечётности инверсий. Тем не менее, доказательство будет представлено в отдельном параграфе, а сегодня у нас сугубо практический урок. Поэтому переходим к частному случаю этой теоремы, когда миноры представляют собой отдельные клетки матрицы. То, о чём сейчас пойдёт речь — как раз и есть основной инструмент работы с определителями, ради которого затевались вся эта дичь с перестановками, минорами и алгебраическими дополнениями. Читайте и наслаждайтесь: Это и есть формула разложения определителя по строке. Но то же верно и для столбцов. Из этого следствия можно сразу сформулировать несколько выводов: Последний факт особенно важен. Например, вместо зверского определителя 4×4 теперь достаточно будет посчитать несколько определителей 3×3 — с ними мы уж как-нибудь справимся.:) Что ж, попробуем посчитать одну такую задачку? \[\left| \begin Решение. Разложим этот определитель по первой строке: Задача. Найдите определитель: \[\left| \begin Решение. Для разнообразия давайте в этот раз работать со столбцами. Например, в последнем столбце присутствуют сразу два нуля — очевидно, это значительно сократит вычисления. Сейчас увидите почему. Итак, раскладываем определитель по четвёртому столбцу: И тут — о, чудо! — два слагаемых сразу улетают коту под хвост, поскольку в них есть множитель «0». Остаётся ещё два определителя 3×3, с которыми мы легко разберёмся: Возвращаемся к исходнику и находим ответ: Ну вот и всё. И никаких 4! = 24 слагаемых считать не пришлось.:) В последней задаче мы видели, как наличие нулей в строках (столбцах) матрицы резко упрощает разложение определителя и вообще все вычисления. Возникает естественный вопрос: а нельзя ли сделать так, чтобы эти нули появились даже в той матрице, где их изначально не было? Ответ однозначен: можно. И здесь нам на помощь приходят свойства определителя: Особую ценность представляет третье свойство: мы можем вычитать из одной строки (столбца) другую до тех пор, пока в нужных местах не появятся нули. Чаще всего расчёты сводится к тому, чтобы «обнулить» весь столбец везде, кроме одного элемента, а затем разложить определитель по этому столбцу, получив матрицу размером на 1 меньше. Давайте посмотрим, как это работает на практике: \[\left| \begin Решение. Нулей тут как бы вообще не наблюдается, поэтому можно «долбить» по любой строке или столбцу — объём вычислений будет примерно одинаковым. Давайте не будем мелочиться и «обнулим» первый столбец: в нём уже есть клетка с единицей, поэтому просто возьмём первую строчку и вычтем её 4 раза из второй, 3 раза из третьей и 2 раза из последней. В результате мы получим новую матрицу, но её определитель будет тем же: Теперь с невозмутимостью Пятачка раскладываем этот определитель по первому столбцу: Понятно, что «выживет» только первое слагаемое — в остальных я даже определители не выписывал, поскольку они всё равно умножаются на ноль. Коэффициент перед определителем равен единице, т.е. его можно не записывать. Зато можно вынести «минусы» из всех трёх строк определителя. По сути, мы трижды вынесли множитель (−1): Получили мелкий определитель 3×3, который уже можно посчитать по правилу треугольников. Но мы попробуем разложить и его по первому столбцу — благо в последней строчке гордо стоит единица: Можно, конечно, ещё поприкалываться и разложить матрицу 2×2 по строке (столбцу), но мы же с вами адекватны, поэтому просто посчитаем ответ: Вот так и разбиваются мечты. Всего-то −160 в ответе.:) Парочка замечаний перед тем, как мы перейдём к последней задаче: Идём дальше. Последняя задача в сегодняшнем уроке. \[\left| \begin Решение. Ну, тут первая строка прямо-таки напрашивается на «обнуление». Берём первый столбец и вычитаем ровно один раз из всех остальных: \[\begin Раскладываем по первой строке, а затем выносим общие множители из оставшихся строк: \[\cdot \left| \begin Снова наблюдаем «красивые» числа, но уже в первом столбце — раскладываем определитель по нему: Каждой квадратной матрице можно поставить в соответствие некоторое число, вычисляемое по определенному правилу и называемое определителем. Определитель матрицы А будем обозначать: |А| или D. Определителем матрицы второго порядка называется число, определяемое по формуле |А| = . Например, |А| = . Определителем матрицы третьего порядка называется число, определяемое по формуле Это число представляет алгебраическую сумму шести произведений, при этом у первых трех произведений знак не меняется, а у последних – меняется на противоположный. Формулу (1.4) можно легко запомнить, используя следующую схему, называемую правилом треугольника или правилом Саррюса: |А| = Определение определителя матрицы n-го порядка давать не будем, а лишь покажем метод его нахождения. В дальнейшем, вместо слов определитель матрицы n-го порядка будем говорить просто определитель n-го порядка. Введем новые понятия. Пусть дана квадратная матрица n-го порядка. Минором Мij элемента аij матрицы А называется определитель (n-1)-го порядка, полученный из матрицы А вычеркиванием i-ой строки и j-го столбца. Алгебраическим дополнением Аij элемента аij матрицы А называется его минор, взятый со знаком (-1) i+j : т.е. алгебраическое дополнение либо совпадает со своим минором, когда сумма номеров строки и столбца – четное число, либо отличается от него знаком, когда сумма номеров строки и столбца – нечетное число. Например, для элементов а11 и а12 матрицы А = миноры М11 = А11 = , М12 = , Теорема (о разложении определителя). Определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения, т.е. Первая формула называется разложением определителя по элементам i-ой строки, а вторая – разложением определителя по элементам j-го столбца. Нетрудно понять, что с помощью этих формул любой определитель n-го порядка можно свести к сумме определителей, порядок которых будет на 1 меньше и т.д. пока не дойдем до определителей 3-го или 2-го порядков, вычисление которых уже не представляет трудности. Для нахождения определителя могут быть применены следующие основные свойства: 1. Если какая-нибудь строка (или столбец) определителя состоит из нулей, то и сам определитель равен нулю. 3. Определитель с двумя одинаковыми или пропорциональными строками (или столбцами) равен нулю. 4. Общий множитель элементов любой строки (или столбца) можно вынести за знак определителя. 5. Величина определителя не изменится, если все строки и столбцы поменять местами. 6. Величина определителя не изменится, если к одной из строк (или к одному из столбцов) прибавить другую строку (столбец), умноженную на любое число. 7. Сумма произведений элементов какой-нибудь строки (или столбца) матрицы на алгебраические дополнения элементов другой строки (столбца) этой матрицы равна нулю. 8. Определитель произведения двух квадратных матриц равен произведению их определителей. Введение понятия определителя матрицы позволяет определить еще одно действие с матрицами – нахождение обратной матрицы. Для каждого ненулевого числа существует обратное число, такое, что произведение этих чисел дает единицу. Для квадратных матриц тоже существует такое понятие. Из определения следует, что только квадратная матрица имеет обратную; в этом случае и обратная матрица будет квадратной того же порядка. Однако не каждая квадратная матрица имеет свою обратную. Матрица А называется невырожденной или неособенной, если ее определитель отличен от нуля. В противном случае, матрица называется вырожденной или особенной. Теорема (о существовании обратной матрицы). Любая неособенная матрица имеет обратную. Матрицу , элементы которой являются алгебраическими дополнениями соответствующих элементов матрицы А, назовем дополнительной к данной матрице А. Обратная матрица определяется по формуле Обратная матрица обладает следующими свойствами: 1. 2. 3. Из формулы вытекает следующее правило нахождения обратной матрицы. Для того чтобы для матрицы А найти обратную нужно: 1) найти определитель матрицы; 2) найти дополнительную матрицу ; 3) транспонировать дополнительную матрицу, т.е. найти ; 4) разделить каждый элемент транспонированной дополнительной матрицы на значение определителя исходной матрицы.Общая схема вычисления определителей
Что такое минор матрицы
один раз навернуться с 11-го этажа есть корм, чем мяукать, сидя на балконе.Алгебраические дополнения
миньоны миноры?» — наверняка спросите вы. Сами по себе — ничего. Но в квадратных матрицах у каждого минора появляется «компаньон» — дополнительный минор, а также алгебраическое дополнение. И вместе эти два ушлёпка позволят нам щёлкать определители как орешки.Теорема Лапласа
Разложение определителя по строке и столбцу
Основные свойства определителя
Определители матриц, их свойства и нахождение