Что называют неопределенным интегралом
Интегралы для чайников: как решать, правила вычисления, объяснение
Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл. Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?
Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Изучаем понятие « интеграл »
Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.
Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.
Неопределенный интеграл
Пусть у нас есть какая-то функция f(x).
Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).
Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.
Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.
Простой пример:
Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.
Полная таблица интегралов для студентов
Определенный интеграл
Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.
В качестве примера представим себе график какой-нибудь функции.
Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:
Точки а и b называются пределами интегрирования.
Бари Алибасов и группа
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правила вычисления интегралов для чайников
Свойства неопределенного интеграла
Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.
Свойства определенного интеграла
Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.
Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:
Примеры решения интегралов
Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.
Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Первообразная функция и неопределенный интеграл
Первообразная
Определение первообразной функции
Можно прочесть двумя способами:
Правила вычисления первообразных
Запомни!
Любая функция F(x) = х 2 + С, где С — произвольная постоянная, и только такая функция, является первообразной для функции f(x) = 2х.
Связь между графиками функции и ее первообразной:
Неопределенный интеграл
Определение:
Свойства неопределённого интеграла
Таблица первообразных и неопределенных интегралов
Функция
Первообразная
F(x) + C
Неопределенные интегралы
\int f(x) dx = F(x) + C
Формула Ньютона–Лейбница
Пусть f (х) данная функция, F её произвольная первообразная.
То есть, интеграл функции f (x) на интервале [a;b] равен разности первообразных в точках b и a.
Площадь криволинейной трапеции
Криволинейной трапецией называется фигура, ограниченная графиком неотрицательной и непрерывной на отрезке [a;b] функции f, осью Ox и прямыми x = a и x = b.
Площадь криволинейной трапеции находят по формуле Ньютона-Лейбница:
Теорема. Две различные первообразные одной и той же функции, определенной на
При этом f (x) называется подынтегральной функцией, f (x)dx – подынтегральным выражением, x – переменной интегрирования.
Согласно определению неопределенного интеграла можно написать:
Основные свойства неопределенного интеграла
1. Неопределенный интеграл от дифференциала непрерывно дифференцируемой функции равен самой этой функции с точностью до постоянного слагаемого
2. Дифференциал неопределенного интеграла равен подынтегральному выражению, а производная неопределенного интеграла равна подынтегральной функции (1,2).
Замечание. В формулах (1) и (2) знаки и уничтожают друга. В этом смысле интегрирование и дифференцирование являются взаимно обратными математическими операциями.
Свойства линейности неопределенного интеграла.
Таблица интегралов
Непосредственное интегрирование
Непосредственное интегрирование заключается в том, чтобы преобразовать подынтегральное выражение, если это возможно, так чтобы получился дифференциал f (x)dx, а затем в таблице
интегралов найти первообразную.
Пример 1.
который можно отыскать в таблице интегралов, где u(x) = sin x.
Пример 2.
Здесь мы умножили подынтегральную функцию и разделили на 2, затем внесли 2 под знак дифференциала. Заменим 2dx =d (2x +1) и получим табличный интеграл
Проверим результат дифференцированием:
Пример 3.
В данном примере мы применили прием подведения под знак дифференциала cosx и постоянной 1. cos xdx = d(1+ sin x).
Пример 4.
Метод подстановки
Пример 6.
Метод интегрирования по частям.
Иногда формула интегрирования по частям применяется несколько раз. Рассмотрим пример такого интеграла.
Замечание. Иногда применение формулы интегрирования по частям приводит к исходному интегралу, который в таком случае называется циклическим или круговым.
Первообразная
Определение. Непрерывная функция F(x) называется первообразной функции f(x), если на промежутке X, если для каждого .
Операция нахождения первообразной функции f(x), называется интегрированием.
Неопределенный интеграл
Неопределённый интеграл-это совокупность всех первообразных функции f(x). В общем случае, нахождение неопределённого интеграла выглядит следующим образом:
,
где f(x)-подынтегральная функция, F(x)-первообразная функция функции f(x), dx-дифференциал, C-константа интегрирования. Неопределённый интеграл представляет собой, как бы, «пучок» первообразных, из-за наличия постоянной интегрирования.
Дифференциал-произвольное, бесконечно малое приращение переменной величины.
Свойства неопределённого интеграла
Таблица основных неопределённых интегралов
В виде
,
где f(x)-подынтегральная функция, F(x)-первообразная функция функции f(x), dx-дифференциал, C-константа интегрирования.
Определённый интеграл
Определенный интеграл— Приращение одной из первообразных функции f(x) на отрезке [a;b].
Общий вид определённого интеграла:
где f(x)–подынтегральная функция, a и b-пределы интегрирования, dx-дифференциал
Свойства определённого интеграла: см. св-ва определённого интеграла.
Определённый интеграл вычисляется по формуле Ньютона –Лейбница:
Применение определённого интеграла:
1. Нахождение площади криволинейной трапеции
2. Нахождение величины скорости v по заданному закону ускорения a(t) за промежуток времени [t1;t2], т.е
Пример: Точка движется по закону ускорения a(t)=t+1. Найти величину ее скорости за промежуток времени [2;4] секунд.
Решение:
3. Нахождение пути S по закону изменения скорости v(t) за промежуток времени [t1;t2], т.е.
Пример: Найти путь, который проделала материальная точка за промежуток времени [2;4], двигаясь со скоростью, которая изменялась по закону: v(t)=2t+2.
Решение:
Стоит отметить, что, на сегодняшний день, интегральное и дифференциальное исчисление занимают лидирующие позиции в математике. Советую вам ознакомиться, более подробно, с широким применением интегралов в естествознании.
Что такое Интеграл
Интеграл — это математическая концепция, которая может быть двух типов:
Определённый интеграл выражает область под кривой графика неотрицательной функции f между любыми двумя значениями a и b, как показано на этом рисунке:
Интеграл, определённый между a и b, представлен как: f(x) dx
Неопределённый интеграл функции f — это другая функция F, полученная процессом, противоположным дифференцированию.
Дифференцирование в математике — это процесс, который превращает функцию f в другую функцию f’, называемую производной от f.
Например, нужно найти производную функции f(x) = cos x:
Обозначение интеграла
Знак определённого интеграла:
Знак неопределённого интеграла: ∫
Основные свойства интегралов
Решение интегралов
Первообразная функция
Это функция, у которой производная функция равна исходной.
Функция F(x) является первообразной для производной функции f(x), если выполняется равенство F'(x) = f(x) (в диапазоне I).
Важная деталь, о которой нужно помнить: первообразные функции не являются единственными! В предыдущем примере первообразная функции 3x² равна x³, но x³ + 1 также является первообразной той же функции (3x²), потому что (x³ + 1)’= 3x².
Это означает, что неопределённый интеграл функции f является множеством всех её первообразных функций и представлен так:
где С — произвольная постоянная.
Неопределённый интеграл
Неопределённый интеграл выглядит примерно так ∫ f(x) d(x) и обозначает множество всех первообразных некоторой функции f(x).
Если F — некоторая частная первообразная, то:
где С — произвольная постоянная.
Например, нужно вычислить неопределённый интеграл:
∫ (2x – 1) dx = ∫2x dx – ∫1dx = 2 (x²/2) – x + C = x² – x + C.
Определённый интеграл
Определённый интеграл выглядит примерно так: f(x) d(x).
С помощью определённого интеграла можно вычислить площадь геометрической фигуры, которая находится под кривой. Отрезок [a;b] называется отрезком интегрирования. Вместо a и b подставляются значения X (минимального и максимального). Например, как на этом рисунке:
Решение определённого интеграла (формула Ньютона-Лейбница):
f(x) dx = F(b) – F(a)
Например, нужно вычислить определённый интеграл:
(2 – x – x²) dx
1) Вычислить первообразную функцию
∫ (2 – x – x²) dx = 2x – x²/2 – x³/3 + C
2) Рассчитать верхний и нижний пределы (разницу между максимальным и минимальным значениями):
(2 – x – x²) dx = [2x – x²/2 – x³/3 + C] = [2(1) – 1²/2 – 1³/3 + C] – [2(-2) – (-2)²/2 – (-2)³/3 + C] = (2 – 1/2 – 1/3) – (-4 –2 + 8/3) = 2 – 1/2 – 1/3 + 4 + 2 – 8/3 = 9/2 = 4,5.
Значит, площадь того, что закрашено на рисунке (под графиком), будет равна 4,5.