Что называют картографическими проекциями

Картографические проекции

Полезное

Смотреть что такое «Картографические проекции» в других словарях:

КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ — математические способы изображения на плоскости поверхности земного эллипсоида или шара. Картографические проекции определяют зависимость между координатами точек на поверхности земного эллипсоида и на плоскости. Из за невозможности развернуть… … Большой Энциклопедический словарь

КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ — КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ, системные методы нанесения меридианов и параллелей Земли на плоскую поверхность. Только на глобусе можно достоверно представить территории и формы. На плоских картах больших территорий искажения неизбежны. Проекции это… … Научно-технический энциклопедический словарь

КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ — математический способ отображения земной поверхности, принимаемой за эллипсоид или шар, на плоскости. Картографические Проекции позволяют учитывать возникающие при этом неизбежные искажения. Картографические Проекции можно задать аналитически или … Морской энциклопедический справочник

картографические проекции — математические способы изображения на плоскости поверхности земного эллипсоида или шара. Картографические проекции определяют зависимость между координатами точек на поверхности земного эллипсоида и на плоскости. Из за невозможности развернуть… … Энциклопедический словарь

КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ — матем. способы изображения на плоскости поверхности земного шара (эллипсоида). К. п. определяют зависимость между координатами точек на поверхности земного эллипсоида и на плоскости. Из за невозможности развернуть поверхность эллипсоида на… … Большой энциклопедический политехнический словарь

КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ — матем. способы изображения на плоскости поверхности земного эллипсоида или шара. К. п. определяют зависимость между координатами точек на поверхности земного эллипсоида и на плоскости. Из за невозможности развернуть поверхность эллипсоида (или… … Естествознание. Энциклопедический словарь

КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ КАРТ АТЛАСА — Поверхность земного шара (эллипсоида) нельзя изобразить на плоскости (в данном случае на карте) без искажений, т. е. таким образом, чтобы масштабы длин оставались постоянными на всех участках карты и по всем направлениям. При мелкомасштабном… … Географический атлас

ИЗОБРАЖЕНИЕ ШАРОВОЙ ПОВЕРЗНОСТИ НА ПЛОСКОСТИ (КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ) — Изображение шаровой поверзности на плоскости (картографические проекции) … Географический атлас

Проекции картографические — см. Картографические проекции … Большая советская энциклопедия

Картографические приборы — приборы, применяемые при составлении и оформлении (подготовке к изданию) карт. При составлении математической основы (картографической сетки и опорных пунктов) применяются Координатографы, штангенциркули (См. Штангенциркуль) с линейками… … Большая советская энциклопедия

Источник

Картографическая проекция

Что называют картографическими проекциями

Что называют картографическими проекциями

Картографи́ческая прое́кция — математически определенный способ отображения поверхности эллипсоида на плоскости.

Суть проекций связана с тем, что фигуру Земли — эллипсоид, не развертываемый в плоскость, заменяют на другую фигуру, развёртываемую на плоскость. При этом с эллипсоида на другую фигуру переносят сетку параллелей и меридианов. Вид этой сетки бывает разный в зависимости от того, какой фигурой заменяется эллипсоид.

Содержание

Искажения

В любой проекции существуют искажения, они бывают четырёх видов:

На различных картах искажения могут быть различных размеров: на крупномасштабных они практически неощутимы, но на мелкомасштабных они бывают очень велики.

Искажения длин

Искажение длин — базовое искажение. Остальные искажения из него логически вытекают. Искажение длин означает непостоянство масштаба плоского изображения, что проявляется в изменении масштаба от точки к точке, и даже в одной и той же точке в зависимости от направления.

Это означает, что на карте присутствует 2 вида масштаба:

Для наглядного изображения частных масштабов вводят Эллипс искажения.

Искажения площадей

Искажения площадей логически вытекают из искажения длин. За характеристику искажения площадей принимают отклонение площади эллипса искажений от исходной площади на эллипсоиде.

Искажения углов

Искажения формы

Искажения формы — графическое изображение вытянутости эллипсоида.

Классификация проекций по характеру искажений

Равноугольные проекции

Что называют картографическими проекциями

Равноугольные проекции — проекции без искажений углов. Весьма удобны для решения навигационных задач. Масштаб зависит только от положения точки и не зависит от направления. Угол на местности всегда равен углу на карте, линия, прямая на местности — прямая на карте. Главным примером данной проекции является цилиндрическая Проекция Меркатора (1569 г.), которая и в наши дни используется для морских навигационных карт.

Равновеликие (равноплощадные) проекции

Что называют картографическими проекциями

Что называют картографическими проекциями

В равновеликих проекциях отсутствуют искажения площадей, но при этом сильны искажения углов и форм, (материки в высоких широтах сплющиваются). В такой проекции изображаются экономические, почвенные и другие мелкомасштабные карты.

Произвольные проекции

В произвольных проекциях имеются искажения и углов, и площадей, но в значительно меньшей степени, чем в равновеликих и равноугольных проекциях, поэтому они наиболее употребляемые.

Частным случаем произвольных проекций являются равнопромежуточные проекции, в которых сохраняются расстояния по некоторым выбранным направлениям: например, прямая азимутальная проекция, в которой правильно изображаются расстояния от полюса.

Классификация проекций по виду параллелей и меридианов нормальной сетки

Цилиндрические проекции

В прямых цилиндрических проекциях параллели и меридианы изображаются двумя семействами параллельных прямых линий, перпендикулярных друг другу. Таким образом задается прямоугольная сетка цилиндрических проекций

Промежутки между параллелями пропорциональны разностям долгот. Промежутки между меридианами определяются принятым характером изображения или способом проектирования точек земной поверхности на боковую поверхность цилиндра. Из определения проекций следует, что их сетка меридианов и параллелей ортогональна. Цилиндрические проекции можно рассматривать как частный случай конических, когда вершина конуса в бесконечности.

По свойствам изображения проекции могут быть равноугольными, равновеликими и произвольными. Применяются прямые, косые и поперечные цилиндрические проекции в зависимости от расположения изображаемой области. В косых и поперечных проекциях меридианы и параллели изображаются различными кривыми, но средний меридиан проекции, на котором располагается полюс косой системы, всегда прямой.

Существуют разные способы образования цилиндрических проекций. Наглядным представляется проектирование земной поверхности на боковую поверхность цилиндра, которая затем развертывается на плоскости. Цилиндр может быть касательным к земному шару или секущим его. В первом случае длины сохраняются по экватору, во втором — по двум стандартным параллелям, симметричным относительно экватора.

Цилиндрические проекции применяются при составлении карт мелких и крупных масштабов — от общегеографических до специальных. Так, например, аэронавигационные маршрутные полетные карты чаще всего составляются в косых и поперечных цилиндрических равноугольных проекциях (на шаре).

В прямых цилиндрических проекциях одинаково изображаются одни и те же участки земной поверхности вдоль линии разреза — по восточной и западной рамкам карты (дублируемые участки карты) и обеспечивается удобство чтения по широтным поясам (например, на картах растительности, осадков) или по меридиональным зонам (например, на картах часовых поясов).

Косые цилиндрические проекции при широте полюса косой системы, близкой к полярным широтам, имеют географическую сетку, дающую представление о сферичности земного шара. С уменьшением широты полюса кривизна параллелей увеличивается, а их протяжение уменьшается, поэтому уменьшаются и искажения (эффект сферичности). В прямых проекциях полюс показывается прямой линией, по длине, равной экватору, но в некоторых из них (проекции Меркатора, Уэтча) полюс изобразить невозможно. Полюс представляется точкой в косых и поперечных проекциях. При ширине полосы до 4,5° можно использовать касательный цилиндр, при увеличении ширины полосы следует применять секущий цилиндр, то есть вводить редукционный коэффициент

Конические проекции

По характеру искажений конические проекции могут быть различными. Наибольшее распространение получили равноугольные и равнопромежуточные проекции. Образование конических проекций можно представить как проектирование земной поверхности на боковую поверхность конуса, определенным образом ориентированного относительно земного шара (эллипсоида).

В прямых конических проекциях оси земного шара и конуса совпадают. При этом конус берется или касательный, или секущий.

После проектирования боковая поверхность конуса разрезается по одной из образующих и развертывается в плоскость. При проектировании по методу линейной перспективы получаются перспективные конические проекции, обладающие только промежуточными свойствами по характеру искажений.

В зависимости от размеров изображаемой территории в конических проекциях принимаются одна или две параллели, вдоль которых сохраняются длины без искажений. Одна параллель (касательная) принимается при небольшом протяжении по широте; две параллели (секущие) — при большом протяжении для уменьшения уклонений масштабов от единицы. В литературе их называют стандартными параллелями.

Азимутальные проекции

В азимутальных проекциях параллели изображаются концентрическими окружностями, а меридианы — пучком прямых, исходящих из центра

Углы между меридианами проекции равны соответствующим разностям долгот. Промежутки между параллелями определяются принятым характером изображения (равноугольным или другим) или способом проектирования точек земной поверхности на картинную плоскость. Нормальная сетка азимутальных проекций ортогональна. Их можно рассматривать как частный случай конических проекций.

Применяются прямые, косые и поперечные азимутальные проекции, что определяется широтой центральной точки проекции, выбор которой зависит от расположения территории. Меридианы и параллели в косых и поперечных проекциях изображаются кривыми линиями, за исключением среднего меридиана, на котором находится центральная точка проекции. В поперечных проекциях прямой изображается также экватор: он является второй осью симметрии.

В зависимости от искажений, азимутальные проекции подразделяются на равноугольные, равновеликие и с промежуточными свойствами. В проекции масштаб длин может сохраняться в точке или вдоль одной из параллелей (вдоль альмукантарата). В первом случае предполагается касательная картинная плоскость, во втором — секущая. В прямых проекциях формулы даются для поверхности эллипсоида или шара (в зависимости от масштаба карт), в косых и поперечных — только для поверхности шара.

Азимутальную равновеликую проекцию называют также стереографической. Она получается проведением лучей из некоторой фиксированной точки поверхности Земли на плоскость, касательную к поверхности Земли в противолежащей точке.

Особый вид азимутальной проекции — гномоническая. Она получается проведением лучей из центра Земли к некоторой касательной к поверхности Земли плоскости. Гномоническая проекция не сохраняет ни площадей, ни углов, но зато на ней кратчайший путь между любыми двумя точками (то есть дуга большого круга) всегда изображается прямой линией; соответственно меридианы и экватор на ней изображаются прямыми линиями.

Псевдоконические проекции

В псевдоконических проекциях параллели изображаются дугами концентрических окружностей, один из меридианов, называемый средним — прямой линией, а остальные — кривыми, симметричными относительно среднего.

Примером псевдоконической проекции может служит равновеликая псевдоконическая проекция Бонна.

Псевдоцилиндрические проекции

В псевдоцилиндрических проекциях все параллели изображаются параллельными прямыми, средний меридиан — прямой линией, перпендикулярной параллелям, а остальные меридианы — кривыми. Причём средний меридиан является осью симметрии проекции.

Поликонические проекции

В поликонических проекциях экватор изображается прямой, а остальные параллели изображаются дугами эксцентрических окружностей. Меридианы изображаются кривыми, симметричными относительно центрального прямого меридиана, перпендикулярного экватору.

Кроме вышеперечисленных встречаются и другие проекции, не относящиеся к указанным видам.

Источник

Картографические проекции. Урок 6

Картографические проекции сегодня – это математические способы изображения всего земного эллипсоида или его части на плоскости, систематическое преобразование широт и долгот с поверхности сферы на плоскость.

Для создания географических карт выполняют две последовательных операции:

При этом картографы пытаются добиться как можно меньшего количества искажений. Сделать мелкомасштабную карту совсем без искажений невозможно. На крупномасштабных (топографических) картах искажения почти отсутствуют. В зависимости от назначения карты одни погрешности допустимы, другие нет. Поэтому и существуют разные типы проекций, предназначенные для сохранения некоторых свойств сферы за счёт других её свойств.

Что называют картографическими проекциямиПроекция на шар — глобус. Автор: UBC Library Digitization Centre

Виды искажений при использовании картографических проекций

Разложить на плоскости эллипс или шар очень трудно, для того, чтобы убедиться в этом, можно попробовать это сделать на практике. Сложить кусочки апельсиновой кожуры так, чтобы между ними не было пустых мест и попробовать получить непрерывную ровную плоскость. Корка соберётся в складки, она не уложится без промежутков.

При любом способе разложения шара на плоскость присутствует один или несколько типов искажения:

При этом типы искажений взаимозависимы, при уменьшении одного из показателей увеличивается другой. В зависимости от назначения карты, на ней присутствуют места с нулевым искажением, с удалением от него количество искажений увеличивается. Поэтому на карте есть три вида масштаба:

При выборе типа картографической проекции сначала строят изоколы – изолинии, соединяющие точки с одинаковым искажением.

Что называют картографическими проекциямиИзоколы искажения углов
Источник: https://ds04.infourok.ru/uploads/ex/0617/00148bfe-04623ef1/hello_html_329bd6b7.jpg

Типы проекций по характеру искажений

Для разных целей нужны карты с отсутствием тех или иных видов искажений. При помощи разных проекций можно сделать так чтобы на них отсутствовали погрешности либо углов, либо длин, либо площадей. Чем больше искажаются углы, тем меньше искажаются площади и наоборот. По характеру искажений все картографические проекции делят на:

Равноугольные картографические проекции

На картах, построенных по этому типу, нет искажений направлений и углов. Направления на местности совпадают с таковыми на карте, прямые линии на местности остаются прямыми на карте. Они используются для прокладки точных маршрутов и применяется на навигационных и топографических картах.

Зато на них сильно изменены площади объектов Земли и линейный масштаб карты зависит от положения на ней данной точки. Типичный пример равноугольной проекции – цилиндрическая проекция Герхарда Меркатора (Герарда Кремера), созданная ещё в 1569 г и используемая в морской навигации до сих пор. Примером использования Проекции Меркатора является равноугольная проекция Гаусса-Крюгера.

В этой проекции создаются отдельные океанологические, климатические и геофизические карты.

Что называют картографическими проекциямиПроекция Меркатора.
Файл доступен по лицензии: Creative Commons Attribution-Share Alike 3.0 Unported

Равновеликие картографические проекции

Это проекции для построении карт, на которых нет искажения площадей (масштаб площадей имеет везде одну и ту же величину), зато сильно растёт погрешность форм и углов (материки и океаны в высоких широтах сплющиваются). Картами, построенными в равновеликих проекциях, удобно пользоваться для расчета площадей, например типов почв, посадок кукурузы, облесенности материков, загрязнения океана или радиоактивного загрязнения суши и др.

Их применяют для составления климатических, почвенных, геофизических, геологических, зоогеографических, геоботанических, экономических, исторических, этнографических, административных карт.

Что называют картографическими проекциямиПример равновеликой проекции. Автор: CC BY-SA 3.0

Произвольные картографические проекции

Углы и площади здесь искажаются, но значительно меньше, чем в предыдущих двух проекциях. Поэтому они наиболее используемы. Произвольные картографические проекции не относятся ни к равновеликим, ни к равноугольным.

Что называют картографическими проекциямиПроизвольная проекция Робинсона. Автор: CC BY-SA 3.0

Равнопромежуточные картографические проекции

Это тип произвольных картографических проекций. В них масштаб длин одного из главных направлений остаётся неизменным. Пример: прямая азимутальная проекция. Равнопромежуточные проекции используют для создания общегеографических, физических, тектонических, политических и др. видов карт.

Характер искажения всегда входит в общее название проекции (равновеликая азимутальная, равноугольная коническая, равновеликая цилиндрическая и т.д.).

Интересно,

что д ревнейшей картографической проекцией является гномическая проекция, применённая на картах звёздного неба Фалесом Милетским ещё в Древней Греции.

Что называют картографическими проекциямиРавнопромежуточная коническая проекция. Автор: CC BY-SA 3.0

Классификация географических проекций по геометрической фигуре, являющейся вспомогательной поверхностью

На плоскость эллипсоид проектируют при помощи геометрических фигур, а поверхности, на которые он проектируется, могут быть секущими (разрезающей) фигуру или касательными (соприкасается, но не разрезает глобус) к ней. При этом на полученной карте касательные и секущие линии (стандартные) представлены неискажёнными.

Проекции также бывают по-разному ориентированы.

Поверхности, которые могут быть развёрнуты на плоскость или лист без растяжений, разрыва или усадки, называются разрабатываемыми поверхностями. Ими являются цилиндр, конус и плоскость. Поэтому по вспомогательной поверхности проекции делятся на:

Что называют картографическими проекциями

Полное название проекций может быть следующим: косая азимутальная равновеликая, нормальная равноугольная цилиндрическая, произвольная поликоническая и т.д.

Источник

КАРТОГРАФИЧЕСКАЯ ПРОЕКЦИЯ

— отображение всей поверхности земного эллипсоида или какой-либо ее части на плоскость, получаемое в основном с целью построения карты.

В картографии часто ограничиваются рассмотрением отображений на плоскость сферы нек-рого радиуса R, отклонениями к-рой от земного эллипсоида можно пренебречь или каким-либо способом их учесть. Поэтому далее имеются в виду отображения на плоскость хОу сферы, отнесенной к географич. координатам j (широта) и X(долгота).

Уравнения К. п. имеют вид

Что называют картографическими проекциями

1. СЕТИ СФЕРИЧЕСКИХ КООРДИНАТНЫХ ЛИНИЙ

Что называют картографическими проекциями

2. ШАР И ЕГО ОРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ

Что называют картографическими проекциями

3. ЦИЛИНДРИЧЕСКИЕ ‘ ПРОЕКЦИИ

А. РАВНОУГОЛЬНАЯ МЕРКАТОРА

Что называют картографическими проекциями

Б. РАВНОПРОМЕЖУТОЧНАЯ (ПРЯМОУГОЛЬНАЯ)

Что называют картографическими проекциями

В. РАВНОВЕЛИКАЯ (ИЗОЦИЛИНДРИЧЕСКАЯ)

Что называют картографическими проекциями

4. КОНИЧЕСКИЕ ПРОЕКЦИИ

Что называют картографическими проекциямиЧто называют картографическими проекциямиЧто называют картографическими проекциями

5. АЗИМУТАЛЬНЫЕ ПРОЕКЦИИ

Что называют картографическими проекциямиЧто называют картографическими проекциямиЧто называют картографическими проекциями

6. ПСЕВДОКОНИЧЕСКАЯ РАВНОВЕЛИКАЯ ПРОЕКЦИЯ БОННА

Что называют картографическими проекциями

7. КОСАЯ ПЕРСПЕКТИВНО-ЦИЛИНДРИЧЕСКАЯ ПРОЕКЦИЯ М.

Полезное

Смотреть что такое «КАРТОГРАФИЧЕСКАЯ ПРОЕКЦИЯ» в других словарях:

картографическая проекция — проекция Математически определенный способ отображения поверхности шара или эллипсоида на плоскость, используемый для создания картографического произведения. [ГОСТ 21667 76] Тематики картография Обобщающие термины математическая картография… … Справочник технического переводчика

картографическая проекция — Математический способ изображения, а также собственно изображение поверхности эллипсоида или шара на плоскости географической карты … Словарь по географии

Картографическая проекция — Пример картографической проекции проекция Меркатора Картографическая проекция математически определенный способ отображения поверхности эллипсоида на плоскости. Суть проекций связана с тем, что фигуру Земли&#16 … Википедия

картографическая проекция — математически определённое отображение поверхности земного шара, эллипсоида (или глобуса) на плоскость карты. Проекция устанавливает соответствие между географическими координатами точки (широтой В и долготой L) и её прямоугольными координатами… … Географическая энциклопедия

псевдоазимутальная картографическая проекция — картографическая проекция Картографическая проекция, в которой параллели нормальной сетки концентрические окружности или их дуги, а меридианы кривые, исходящие из центра параллелей, симметричные относительно одного или двух прямолинейных… … Справочник технического переводчика

равновеликая картографическая проекция — равновеликая проекция Н.д.п. авталическая проекция гомолографическая проекция равноплощадная проекция эквивалентная проекция Картографическая проекция, в которой отсутствуют искажения площадей. [ГОСТ 21667 76] Недопустимые, нерекомендуемые… … Справочник технического переводчика

равноугольная картографическая проекция — равноугольная проекция Ндп. конформная проекция ортоморфная проекция изогональная проекция автогональная проекция Картографическая проекция, в которой отсутствуют искажения углов. [ГОСТ 21667 76] Недопустимые, нерекомендуемые автогональная… … Справочник технического переводчика

азимутальная картографическая проекция — азимутальная проекция Ндп. зенитальная проекция Картографическая проекция, в которой параллели нормальной сетки концентрические окружности, а меридианы их радиусы, углы между которыми равны соответствующим разностям долгот. [ГОСТ 21667 76]… … Справочник технического переводчика

равнопромежуточная картографическая проекция — равнопромежуточная проекция Ндп. эквидистантная проекция Произвольная картографическая проекция, в которой масштаб по одному из главных направлений постоянная величина. [ГОСТ 21667 76] Недопустимые, нерекомендуемые эквидистантная проекция… … Справочник технического переводчика

коническая картографическая проекция — коническая проекция Картографическая проекция, в которой параллели нормальной сетки дуги концентрических окружностей, а меридианы их радиусы, углы между которыми пропорциональны соответствующим разностям долгот. [ГОСТ 21667 76] Тематики… … Справочник технического переводчика

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *