Что называют гранями многогранника
Что такое многогранник? Примеры
Примеры многогранников:
1) каждая сторона одного является одновременно стороной другого (но только одного), называемого смежным с первым (по этой стороне);
Многогранник называется выпуклым, если он лежит по одну сторону от плоскости любой его грани.
Из этого определения следует, что все грани выпуклого многогранника являются плоскими многоугольниками. Поверхность выпуклого многогранника состоит из граней, которые лежат в разных плоскостях. При этом ребрами многогранника являются стороны многоугольников, вершинами многогранника – вершины граней, плоскими углами многогранника – углы многоугольников – граней.
Выпуклый многогранник, все вершины которого лежат в двух параллельных плоскостях, называется призматоидом. Призма, пирамида и усеченная пирамида – частные случаи призматоида. Все боковые грани призматоида являются треугольниками или четырехугольниками, причем четырехугольные грани – это трапеции или параллелограммы.
Популярное
Совершенство сферической формы издавна привлекало внимание мыслителей и учёных, которые с помощью сфер пытались объяснить гармонию окружающего мира.
Памятник многограннику «Усечённый большой додекаэдр» был обнаружен в городе Обнинск, напротив здания «ДОСААФ» (ул.Шацкого, д.14).
На первый взгляд может показаться, что выбор клея, задача совсем простая, тем более для бумаги (картона). Но, когда получаешь отзывы как от ребят, так.
Монумент «Звезда Кеплера» (норв. Keplerstjernen), высотой 45 метров, расположен недалеко от города Осло (Норвегия) в окрестностях аэропорта.
Приходилось ли вам сталкиваться с кубом, грани которого могут изменять свой цвет? Если да, то вполне вероятно вы уже сталкивались с.
(головоломка «звезда») Состоит из шести симметричных брусочков сложной формы, соединенных в форме многогранной звезды. Задача заключается в том, чтобы разъединить фигуру на.
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок № 13. Многогранники
Перечень вопросов, рассматриваемых в теме:
Многогранник – геометрическое тело, ограниченное конечным числом плоских многоугольников.
Грани многогранника – многоугольники, ограничивающие многогранники.
Ребра многогранника – стороны граней многогранника.
Вершины многогранника – концы ребер многогранника (вершины граней многогранника).
Диагональ многогранника – отрезок, соединяющий две вершины, не принадлежащие одной грани.
Выпуклый многогранник – многогранник, расположенный по одну сторону от плоскости его любой грани.
Невыпуклый многогранник – многогранник, у которого найдется по крайней мере одна грань такая, что плоскость, проведенная через эту грань, делит данный многогранник на две или более частей.
Атанасян Л. С., В. Ф. Бутузов, С. Б. Кадомцев и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. Для общеобразоват. организаций: базовый и углубл. уровния. – М.: Просвещение, 2014. – 255 с. (стр. 58, стр. 60 – 61)
Долбилин Н. П. Жемчужины теории многогранников М. : – МЦНМО, 2000. – 40 с.: ил. (стр. 27 – 31)
Открытые электронные ресурсы:
Долбилин Н. П. Три теоремы о выпуклых многогранниках. Журнал Квант.
Теоретический материал для самостоятельного изучения
К определению понятия многогранника существует два подхода. Проведем аналогию с понятием многоугольника. Напомним, что в планиметрии под многоугольником мы понимали замкнутую линию без самопересечений, составленную из отрезков (рис. 1а). Также многоугольник можно рассматривать как часть плоскости, ограниченную этой линией, включая ее саму (рис. 1б). При изучении тел в пространстве мы будем пользоваться вторым толкованием понятия многоугольник. Так, любой многоугольник в пространстве есть плоская поверхность.
Б)
Рисунок 1 – разные подходы к определению многоугольника
Вторая трактовка понятия определяет многогранник как геометрическое тело, ограниченное конечным числом плоских многоугольников.
В дальнейшем, мы будем использовать вторую трактовку понятия многогранника.
Уже известные вам тетраэдр и параллелепипед являются многогранниками. Потому что они являются геометрическими телами, ограниченные конечным числом плоских многоугольников. Еще один пример многогранника — октаэдр (рис. 2)
Рисунок 2 – изображение октаэдра
Многоугольники, ограничивающие многогранник, называются его гранями. Так, у тетраэдра и октаэдра гранями являются треугольники. У тетраэдра 4 грани, отсюда и его название от греч. τετρά-εδρον — четырёхгранник. У октаэдра 8 граней, а от греческого οκτάεδρον от οκτώ «восемь» + έδρα «основание».
Стороны граней называются ребрами, а концы ребер — вершинами многогранника. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.
Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани. В остальных случаях многогранник называется невыпуклым (рис.3).
Рисунок 3 – Виды многогранников
Сумма плоских углов при вершине выпуклого многогранника
Рисунок 4 – сумма плоских углов пи вершине многогранника
Теорема Эйлера. Пусть В — число вершин выпуклого многогранника, Р — число его ребер, а Г — число его граней. Тогда верно равенство В – Р+Г= 2.
Теорема Эйлера играет огромную роль в математике. С ее помощью было доказано огромное количество теорем. Находясь в центре постоянного внимания со стороны математиков, теорема Эйлера получила далеко идущие обобщения. Более того, эта теорема открыла новую главу в математике, которая называется топологией.
Примеры и разбор решения заданий тренировочного модуля
Задание 1. Какие из перечисленных объектов НЕ могут быть элементами многогранника? Укажите номера в порядке возрастания.
Элементы многогранника, которые мы выделили: ребра, грани, вершины и диагонали. Ребро и диагональ многогранника – это отрезок. Грань многогранника – многоугольник, или иначе ограниченная часть плоскости. Вершины представляют собой точки. Таким образом, элементами многогранника не могут быть плоскость, луч, многогранник, прямая.
Задание 2. Сопоставьте геометрическим фигурам их вид
Б) пространственная фигура
Вспомним, что изобразить пространственную фигуру можно разными способами. Например, с помощью теней или изображением невидимых линий пунктиром. Так, среди всех изображений плоской фигурой является фигура под номером 1.
Многогранник – геометрическое тело, ограниченное конечным числом плоских многоугольников. Только на изображении 2 фигура ограничена многоугольниками. Таким образом, получаем следующий ответ: 1-А, 2-В, 3-Б
§ 1. Пространственные фигуры
1. Какие геометрические фигуры называются плоскими; пространственными?
Плоскими называются фигуры, точки которых принадлежат одной плоскости. Пространственными называются фигуры, точки которых принадлежат нескольким плоскостям.
2. Какое тело называют многогранником?
Многогранником называют тело, ограниченное плоскими многоугольниками.
3. Что называют гранями многогранника; рёбрами многогранника; вершинами многогранника?
Гранями многогранника называют плоскости, ограниченные сторонами многоугольников, из которых состоит многогранник.
Вершинами многогранника называют вершины многоугольников, из которых состоит многогранник.
Рёбрами многогранника называют стороны многоугольников, из которых состоит многогранник.
4. Какой многогранник называется призмой?
Призмой называется многогранник, две грани которого — равные n-угольники, а остальные n граней — параллелограммы.
5. Что называют основаниями призмы; боковыми гранями призмы; боковыми рёбрами призмы?
Основаниями призмы называют равные грани-многоугольники этой призмы.
Боковыми гранями призмы называют параллелограммы, из которых состоит призма.
Боковыми рёбрами призмы называют рёбра боковых граней, не принадлежащие основаниям.
6. Какая призма называется прямой призмой; наклонной призмой?
Прямой называется призма, боковые грани которой являются прямоугольниками.
Наклонной называется призма, боковые рёбра которой не перпендикулярны рёбрам основания призмы.
7. Какая призма называется правильной призмой?
Правильной называется прямая призма, основания которой являются правильными многоугольниками.
8. Какая призма называется параллелепипедом; прямым параллелепипедом?
Параллелепипедом называется призма, основаниями которой являются параллелограммы.
Прямым параллелепипедом называется параллелепипед, боковые грани которого являются прямоугольниками.
9. Какой прямой параллелепипед называется прямоугольным параллелепипедом?
Прямоугольным параллелепипедом называется прямой параллелепипед, основания которого являются прямоугольниками.
10. Какие рёбра прямоугольного параллелепипеда называются его измерениями?
Измерениями прямоугольного параллелепипеда называются рёбра, которые сходятся в одной вершине.
11. Какой многогранник называется пирамидой?
Пирамидой называется многогранник, одна грань которого — многоугольник, а остальные — треугольники с общей вершиной.
12. Что называют основанием пирамиды; боковыми гранями пирамиды; вершиной пирамиды?
Основанием пирамиды называют её многоугольную грань.
Боковыми гранями пирамиды называют её треугольные грани.
Вершиной пирамиды называют общую вершину её боковых граней.
13. Какая пирамида называется правильной пирамидой?
Правильной называется пирамида, основание которой — правильный многоугольник, а отрезок, соединяющий её вершину с центром основания, перпендикулярен любой прямой, проведённой в плоскости основания через этот центр.
14. Какой отрезок называется апофемой правильной пирамиды?
Апофемой правильной пирамиды называют высоту боковой грани пирамиды, опущенную из вершины пирамиды.
15. Сформулируйте свойство боковых рёбер правильной пирамиды; боковых граней правильной пирамиды; апофем правильной пирамиды.
16. Чему равна площадь боковой поверхности правильной пирамиды?
Площадь боковой поверхности правильной пирамиды равна произведению полупериметра её основания и апофемы.
17. Какое тело называется цилиндром?
Цилиндром называется тело, которое получено вращением прямоугольника вокруг одной из его сторон.
18. Какое тело называется конусом?
Конусом называется тело, которое получено вращением прямоугольного треугольника вокруг одного из его катетов.
19. Какое тело называется шаром?
Шаром называется тело, которое получено вращением круга вокруг своего диаметра.
20. Верно ли, что:
а) количество вершин любой призмы — число чётное.
Верно. Если дана призма с n-угольником в основании, то количество вершин равно n + n = 2n. А 2n делится на 2.
б) количество рёбер любой призмы — число, кратное трём?
Верно. Если дана призма с n-угольником в основании, то количество ребер будет равно сумме n ребер нижнего основания, n ребер верхнего основания и n боковых ребер. Таким образом, количество ребёр равно n + n + n = 3n. А 3n делится на 3.
21. Найдите количество диагоналей семиугольной призмы.
Из одной вершины можно провести n – 3 диагоналей. Количество диагоналей будет равно n × (n – 3) = 7 × (7 – 3) = 28.
22. Существует ли пирамида, которая имеет 11 рёбер? Обоснуйте свой ответ.
Такой пирамиды не существует, поскольку пирамида всегда имеет чётное количество рёбер, т.к. количество рёбер n-угольной пирамиды равно 2n, а 2n делится на 2.
math4school.ru
Многогранники
Основные понятия
Некоторые пространственные фигуры, изучаемые в стереометрии, называют телами или геометрическими телами. Наглядно тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью.
Многогранником называется геометрическое тело, поверхность которого состоит из конечного числа плоских многоугольников.
Выпуклым называется многогранник, если он расположен по одну сторону плоскости, проведённой через любой многоугольник, образующий поверхность данного многогранника.
Многоугольники, составляющие поверхность многогранника, называются его гранями; стороны многоугольников – рёбрами; вершины – вершинами многогранника:
Теорема Эйлера для многогранников:
Если V — число вершин выпуклого многогранника, R — число его ребер и G — число граней, то верно равенство:
Призма
Призмой называется многогранник, состоящий из двух плоских многоугольников, которые лежат в разных плоскостях и совмещаются параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников. Многоугольники, о которых шла речь, называются основаниями призмы, а отрезки, соединяющие их соответствующие вершины – боковыми рёбрами призмы.
Основания призмы равны и лежат в параллельных плоскостях.
Боковые рёбра призмы равны и параллельны.
Поверхность призмы состоит из двух оснований и боковой поверхности.
Боковая поверхность любой призмы состоит из параллелограммов, у каждого из которых две стороны являются соответствующими сторонами оснований, а две другие – соседними боковыми рёбрами.
Высотой призмы называется любой из перпендикуляров, проведённых из точки одного основания к плоскости другого основания призмы.
A1О – высота призмы;
α – угол наклона бокового ребра к основанию призмы.
Призма называется прямой, если её рёбра перпендикулярны плоскостям оснований. В противном случае призма называется наклонной.
Боковые грани прямой призмы – прямоугольники.
Боковое ребро прямой призмы является её высотой.
Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы:
Прямая призма называется правильной, если её основания являются правильными многоугольниками.
Сечения призмы плоскостями, параллельными боковым рёбрам,являются параллелограммами. В частности, параллелограммами являются диагональные сечения. Это сечения плоскостями, проходящими, через два боковых ребра, не принадлежащих одной грани:
ВВ1D1 D – диагональное сечение.
Если в произвольной наклонной призме провести сечение, перпендикулярное боковым рёбрам и пересекающее все боковые рёбра, и площадь этого сечения обозначить S⊥, а периметр – Р⊥, тогда:
В любой призме площадь полной поверхности считается как сумма площади боковой поверхности и удвоенной площади основания:
Параллелепипед
Призма, в основании которой лежит параллелограмм, называется параллелепипедом.
У параллелепипеда все грани – параллелограммы.
Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.
У параллелепипеда противолежащие грани параллельны и равны.
Диагональю параллелепипеда, как и многогранника вообще, называется отрезок, соединяющий вершины параллелепипеда, не лежащие в одной его грани.
Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.
Точка пересечения диагоналей параллелепипеда является его центром симметрии.
Прямоугольным параллелепипедом называется такой прямой параллелепипед, в основании которого лежит прямоугольник.
Все грани прямоугольного параллелепипеда являются прямоугольниками.
Длины рёбер прямоугольного параллелепипеда, выходящих из одной вершины, называются его измерениями или линейными размерами.
У прямоугольного параллелепипеда три измерения.
В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трёх его измерений:
В прямоугольном параллелепипеде верно:
В прямоугольном параллелепипеде, как и во всяком параллелепипеде, есть центр симметрии – точка пересечения его диагоналей. У него есть также три плоскости симметрии, проходящие через центр симметрии параллельно парам противолежащих граней. На первом рисунке, приведённом выше, показана одна из таких плоскостей. Она проходит через середины четырех параллельных ребер параллелепипеда.
Если у параллелепипеда все линейные размеры разные, то у него нет других плоскостей симметрии, кроме трёх названных.
Если же у параллелепипеда два линейных размера равны, то есть он является правильной четырёхугольной призмой, то у него есть еще две плоскости симметрии. Это плоскости диагональных сечений, показанные на втором рисунке.
Прямоугольный параллелепипед, у которого все три измерения равны, называется кубом.
Диагональ куба в квадратный корень из трёх раз больше его стороны:
Четыре сечения куба являются правильными шестиугольниками (одно из них показано на рисунке) – эти сечения проходят через центр куба перпендикулярно четырём его диагоналям.
У куба девять плоскостей симметрии:
Пирамида
Пирамидой (например, SABCDE ) называется многогранник, который состоит из плоского многоугольника (пятиугольник ABCDE ) – основания пирамиды, точки ( S ), не лежащей в плоскости основания,– вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания.
Поверхность пирамиды состоит из основания (пятиугольник ABCDE ) и боковых граней. Каждая боковая грань – треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной – сторона основания пирамиды:
Боковой поверхностью пирамиды называется сумма площадей ее боковых граней.
Высотой пирамиды ( SО ) называется перпендикуляр, проведённый из вершины пирамиды к плоскости основания.
α – угол наклона бокового ребра SA пирамиды к плоскости её основания;
β – угол наклона боковой грани ( SED ) пирамиды к плоскости её основания.
Основание высоты пирамиды является центром окружности, описанной около основания пирамиды, тогда и только тогда, когда выполняется одно из условий:
Основание высоты пирамиды является центром окружности, вписанной в основание пирамиды, тогда и только тогда, когда выполняется одно из условий:
Объём пирамиды равен трети произведения площади основания на высоту пирамиды:
Площадь полной поверхности любой пирамиды равна сумме площадей боковой поверхности и основания:
Сечения пирамиды плоскостями, проходящими через ее вершину, представляют собой треугольники. В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды.
Плоскость, которая пересекает пирамиду и параллельна её основанию, делит её на две части:
многогранник, называемый усеченной пирамидой ( AВСA1В1С1 ).
Основания усеченной пирамиды представляют собой подобные многоугольники, боковые грани – трапеции.
Высота усеченной пирамиды ( ОО1 ) – это расстояние между плоскостями её оснований.
Если S1 и S2 – площади оснований усечённой пирамиды и h – её высота, то для объёма усеченной пирамиды верно:
Пирамида (например, SABCD ) называется правильной, если ее основанием является правильный многоугольник ( ABCD – квадрат ), а основание высоты совпадает с центром этого многоугольника ( О – центр описанной и вписанной окружностей основания).
Осью правильной пирамиды называется прямая, содержащая ее высоту.
Боковые ребра правильной пирамиды равны.
Боковые грани правильной пирамиды – равные равнобедренные треугольники.
Высота боковой грани правильной пирамиды ( SL ), проведенная из ее вершины к стороне основания, называется апофемой.
Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему:
Усеченная пирамида (например, АВСDA1В1С1D1 ), которая получается из правильной пирамиды, также называется правильной.
Правильные многогранники
Тетраэдр Куб Октаэдр
Додекаэдр Икосаэдр
Существует пять типов правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр, икосаэдр.
У правильного тетраэдра грани – правильные треугольники; в каждой вершине сходится по три ребра. Тетраэдр представляет собой треугольную пирамиду, у которой все ребра равны.
У куба (правильный гексаэдр) все грани – квадраты; в каждой вершине сходится по три ребра. Куб представляет собой прямоугольный параллелепипед с равными ребрами.
У октаэдра грани – правильные треугольники, но в отличие от тетраэдра в каждой его вершине сходится по четыре ребра.
У додекаэдра грани – правильные пятиугольники. В каждой вершине сходится по три ребра.
У икосаэдра грани – правильные треугольники, но в отличие от тетраэдра и октаэдра в каждой вершине сходится по пять ребер.