Что называют гранями многогранника ребрами вершинами

§ 1. Пространственные фигуры

1. Какие геометрические фигуры называются плоскими; пространственными?

Плоскими называются фигуры, точки которых принадлежат одной плоскости. Пространственными называются фигуры, точки которых принадлежат нескольким плоскостям.

2. Какое тело называют многогранником?

Многогранником называют тело, ограниченное плоскими многоугольниками.

3. Что называют гранями многогранника; рёбрами многогранника; вершинами многогранника?

Гранями многогранника называют плоскости, ограниченные сторонами многоугольников, из которых состоит многогранник.

Вершинами многогранника называют вершины многоугольников, из которых состоит многогранник.

Рёбрами многогранника называют стороны многоугольников, из которых состоит многогранник.

4. Какой многогранник называется призмой?

Призмой называется многогранник, две грани которого — равные n-угольники, а остальные n граней — параллелограммы.

5. Что называют основаниями призмы; боковыми гранями призмы; боковыми рёбрами призмы?

Основаниями призмы называют равные грани-многоугольники этой призмы.

Боковыми гранями призмы называют параллелограммы, из которых состоит призма.

Боковыми рёбрами призмы называют рёбра боковых граней, не принадлежащие основаниям.

6. Какая призма называется прямой призмой; наклонной призмой?

Прямой называется призма, боковые грани которой являются прямоугольниками.

Наклонной называется призма, боковые рёбра которой не перпендикулярны рёбрам основания призмы.

7. Какая призма называется правильной призмой?

Правильной называется прямая призма, основания которой являются правильными многоугольниками.

8. Какая призма называется параллелепипедом; прямым параллелепипедом?

Параллелепипедом называется призма, основаниями которой являются параллелограммы.

Прямым параллелепипедом называется параллелепипед, боковые грани которого являются прямоугольниками.

9. Какой прямой параллелепипед называется прямоугольным параллелепипедом?

Прямоугольным параллелепипедом называется прямой параллелепипед, основания которого являются прямоугольниками.

10. Какие рёбра прямоугольного параллелепипеда называются его измерениями?

Измерениями прямоугольного параллелепипеда называются рёбра, которые сходятся в одной вершине.

11. Какой многогранник называется пирамидой?

Пирамидой называется многогранник, одна грань которого — многоугольник, а остальные — треугольники с общей вершиной.

12. Что называют основанием пирамиды; боковыми гранями пирамиды; вершиной пирамиды?

Основанием пирамиды называют её многоугольную грань.

Боковыми гранями пирамиды называют её треугольные грани.

Вершиной пирамиды называют общую вершину её боковых граней.

13. Какая пирамида называется правильной пирамидой?

Правильной называется пирамида, основание которой — правильный многоугольник, а отрезок, соединяющий её вершину с центром основания, перпендикулярен любой прямой, проведённой в плоскости основания через этот центр.

14. Какой отрезок называется апофемой правильной пирамиды?

Апофемой правильной пирамиды называют высоту боковой грани пирамиды, опущенную из вершины пирамиды.

15. Сформулируйте свойство боковых рёбер правильной пирамиды; боковых граней правильной пирамиды; апофем правильной пирамиды.

16. Чему равна площадь боковой поверхности правильной пирамиды?

Площадь боковой поверхности правильной пирамиды равна произведению полупериметра её основания и апофемы.

17. Какое тело называется цилиндром?

Цилиндром называется тело, которое получено вращением прямоугольника вокруг одной из его сторон.

18. Какое тело называется конусом?

Конусом называется тело, которое получено вращением прямоугольного треугольника вокруг одного из его катетов.

19. Какое тело называется шаром?

Шаром называется тело, которое получено вращением круга вокруг своего диаметра.

20. Верно ли, что:

а) количество вершин любой призмы — число чётное.

Верно. Если дана призма с n-угольником в основании, то количество вершин равно n + n = 2n. А 2n делится на 2.

б) количество рёбер любой призмы — число, кратное трём?

Верно. Если дана призма с n-угольником в основании, то количество ребер будет равно сумме n ребер нижнего основания, n ребер верхнего основания и n боковых ребер. Таким образом, количество ребёр равно n + n + n = 3n. А 3n делится на 3.

21. Найдите количество диагоналей семиугольной призмы.

Из одной вершины можно провести n – 3 диагоналей. Количество диагоналей будет равно n × (n – 3) = 7 × (7 – 3) = 28.

22. Существует ли пирамида, которая имеет 11 рёбер? Обоснуйте свой ответ.

Такой пирамиды не существует, поскольку пирамида всегда имеет чётное количество рёбер, т.к. количество рёбер n-угольной пирамиды равно 2n, а 2n делится на 2.

Источник

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок № 13. Многогранники

Перечень вопросов, рассматриваемых в теме:

Многогранник – геометрическое тело, ограниченное конечным числом плоских многоугольников.

Грани многогранника – многоугольники, ограничивающие многогранники.

Ребра многогранника – стороны граней многогранника.

Вершины многогранника – концы ребер многогранника (вершины граней многогранника).

Диагональ многогранника – отрезок, соединяющий две вершины, не принадлежащие одной грани.

Выпуклый многогранник – многогранник, расположенный по одну сторону от плоскости его любой грани.

Невыпуклый многогранник – многогранник, у которого найдется по крайней мере одна грань такая, что плоскость, проведенная через эту грань, делит данный многогранник на две или более частей.

Атанасян Л. С., В. Ф. Бутузов, С. Б. Кадомцев и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. Для общеобразоват. организаций: базовый и углубл. уровния. – М.: Просвещение, 2014. – 255 с. (стр. 58, стр. 60 – 61)

Долбилин Н. П. Жемчужины теории многогранников М. : – МЦНМО, 2000. – 40 с.: ил. (стр. 27 – 31)

Открытые электронные ресурсы:

Долбилин Н. П. Три теоремы о выпуклых многогранниках. Журнал Квант.

Теоретический материал для самостоятельного изучения

К определению понятия многогранника существует два подхода. Проведем аналогию с понятием многоугольника. Напомним, что в планиметрии под многоугольником мы понимали замкнутую линию без самопересечений, составленную из отрезков (рис. 1а). Также многоугольник можно рассматривать как часть плоскости, ограниченную этой линией, включая ее саму (рис. 1б). При изучении тел в пространстве мы будем пользоваться вторым толкованием понятия многоугольник. Так, любой многоугольник в пространстве есть плоская поверхность.

Б)Что называют гранями многогранника ребрами вершинами

Что называют гранями многогранника ребрами вершинами

Рисунок 1 – разные подходы к определению многоугольника

Вторая трактовка понятия определяет многогранник как геометрическое тело, ограниченное конечным числом плоских многоугольников.

В дальнейшем, мы будем использовать вторую трактовку понятия многогранника.

Уже известные вам тетраэдр и параллелепипед являются многогранниками. Потому что они являются геометрическими телами, ограниченные конечным числом плоских многоугольников. Еще один пример многогранника — октаэдр (рис. 2)

Что называют гранями многогранника ребрами вершинами

Рисунок 2 – изображение октаэдра

Многоугольники, ограничивающие многогранник, называются его гранями. Так, у тетраэдра и октаэдра гранями являются треугольники. У тетраэдра 4 грани, отсюда и его название от греч. τετρά-εδρον — четырёхгранник. У октаэдра 8 граней, а от греческого οκτάεδρον от οκτώ «восемь» + έδρα «основание».

Стороны граней называются ребрами, а концы ребер — вершинами многогранника. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.

Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани. В остальных случаях многогранник называется невыпуклым (рис.3).

Что называют гранями многогранника ребрами вершинами

Рисунок 3 – Виды многогранников

Сумма плоских углов при вершине выпуклого многогранника

Что называют гранями многогранника ребрами вершинами

Рисунок 4 – сумма плоских углов пи вершине многогранника

Теорема Эйлера. Пусть В — число вершин выпуклого многогранника, Р — число его ребер, а Г — число его граней. Тогда верно равенство В – Р+Г= 2.

Теорема Эйлера играет огромную роль в математике. С ее помощью было доказано огромное количество теорем. Находясь в центре постоянного внимания со стороны математиков, теорема Эйлера получила далеко идущие обобщения. Более того, эта теорема открыла новую главу в математике, которая называется топологией.

Примеры и разбор решения заданий тренировочного модуля

Задание 1. Какие из перечисленных объектов НЕ могут быть элементами многогранника? Укажите номера в порядке возрастания.

Элементы многогранника, которые мы выделили: ребра, грани, вершины и диагонали. Ребро и диагональ многогранника – это отрезок. Грань многогранника – многоугольник, или иначе ограниченная часть плоскости. Вершины представляют собой точки. Таким образом, элементами многогранника не могут быть плоскость, луч, многогранник, прямая.

Задание 2. Сопоставьте геометрическим фигурам их вид

Что называют гранями многогранника ребрами вершинамиЧто называют гранями многогранника ребрами вершинамиЧто называют гранями многогранника ребрами вершинами

Б) пространственная фигура

Вспомним, что изобразить пространственную фигуру можно разными способами. Например, с помощью теней или изображением невидимых линий пунктиром. Так, среди всех изображений плоской фигурой является фигура под номером 1.

Многогранник – геометрическое тело, ограниченное конечным числом плоских многоугольников. Только на изображении 2 фигура ограничена многоугольниками. Таким образом, получаем следующий ответ: 1-А, 2-В, 3-Б

Источник

Что такое многогранник? Примеры

Примеры многогранников:

Что называют гранями многогранника ребрами вершинами

1) каждая сторона одного является одновременно стороной другого (но только одного), называемого смежным с первым (по этой стороне);

Многогранник называется выпуклым, если он лежит по одну сторону от плоскости любой его грани.

Из этого определения следует, что все грани выпуклого многогранника являются плоскими многоугольниками. Поверхность выпуклого многогранника состоит из граней, которые лежат в разных плоскостях. При этом ребрами многогранника являются стороны многоугольников, вершинами многогранника – вершины граней, плоскими углами многогранника – углы многоугольников – граней.

Выпуклый многогранник, все вершины которого лежат в двух параллельных плоскостях, называется призматоидом. Призма, пирамида и усеченная пирамида – частные случаи призматоида. Все боковые грани призматоида являются треугольниками или четырехугольниками, причем четырехугольные грани – это трапеции или параллелограммы.

Популярное

Изобретение календаря замечательное событие для человечества. То, что год состоит из 12ти месяцев ни для кого не секрет. С тех пор люди самыми различными способами группируют.

Для первобытного человека когда-то костер стал новой формой общественной жизни. Ночь перестала быть неотвратимым черным провалом и ценность огня заставила.

Знакомые каждому с детства коробочки для Биг-Мака и картошки, стаканчик для Кока-Колы так же делают из бумажных разверток.

Основатели города Мирный, находящегося в Архангельской области разместили на флаге и гербе своего города многогранник – «Большой додекаэдр».

В этой статье мы постараемся ответить на вопрос: «Можно ли купить для класса Волшебные грани используя бюджетные средства»?

Можно ли представить икосаэдр в виде более простых многогранников.

Геометрическая форма коробочки издалека напоминает округлую форму, что делает акцент на сходство с мячиком. Но если присмотреться по внимательнее, то мы видим.

Источник

Вершины, рёбра, грани многогранника

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

«Вершины, ребра, грани многогранника»

Многогранник (многогранная поверхность) – это поверхность, составленная из многоугольников, ограничивающая некоторое геометрическое тело. Примером многогранника является куб, параллелепипед, призма и т.д.

Грани многогранника – это многоугольники, из которых составлен многогранник. Например, гранями параллелепипеда являются параллелограммы.

Стороны граней называются ребрами, а концы ребер – вершинами многогранника.

Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.

Плоскость, по обе стороны от которой имеются точки многогранника, называется секущей плоскостью, а общая часть многогранника и секущей плоскости – сечением многогранника.

Многогранники бывают выпуклые и невыпуклые.

Многогранник называется выпуклым, если он расположен по одну сторону от плоскости каждой его грани. Все грани выпуклого многогранника являются выпуклыми многоугольниками.

Теорема Эйлера: в любом выпуклом многограннике сумма числа граней и числа вершин больше числа ребер на 2.

Леонардо Эйлер (1707 – 1783) – швейцарец по происхождению, выдающийся математик. Большую часть жизни работал в России.

Что называют гранями многогранника ребрами вершинами

Что называют гранями многогранника ребрами вершинами

Что называют гранями многогранника ребрами вершинами

Что называют гранями многогранника ребрами вершинами

Что называют гранями многогранника ребрами вершинами

Что называют гранями многогранника ребрами вершинами

Решить задачу: Начертите произвольный прямоугольный параллелепипед, укажите все его вершины, ребра и грани. Проверьте выполнимость формулы Эйлера.

Выпуклые многогранники: а, б, д

Невыпуклые многогранники: в, г

8 вершин, 12 ребер, 6 граней

Формула Эйлера: 6 + 8 – 12 = 2

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Многогранники

Математика. 4 класс

Тема. «Многогранник. Элементы многогранника – грани, вершины, ребра».

Цели. Создать условия для расширения теоретических знаний о пространственных фигурах: ввести понятия «многогранник», «грани», «вершина», «ребро»; обеспечить развитие у школьников умения выделять главное в познавательном объекте; содействовать развитию пространственного воображения учащихся.

Учебные материалы. Учебник «Математика. 4 класс» (авт. В.Н. Рудницкая, Т.В. Юдачева); компьютер; проектор; презентация «Многоугольники»; печатные бланки «Координатный угол», «Многоугольники», «Задача»; модели многогранников, развертки многогранников; зеркала; ножницы.

Перед началом урока дети распределяются на три группы соответственно уровню знаний – высокий, средний, низкий.

I. Организационный момент

Учитель. Дорогие мои непоседы, в очередной раз я приглашаю вас в увлекательный мир математики. И я уверена в том, что и на этом уроке вы узнаете новое, закрепите изученное и сможете полученные знания применить на практике.

Сегодня наш урок мне хочется начать словами английского философа Роджера Бэкона о математике: «Тот, кто не знает математики, не может изучить другие науки и не может познать мир». Я думаю, что на уроке мы непременно найдем подтверждение словам этого философа.

II. Повторение пройденного материала. Построение многоугольников по координатам

У. На уроках математики в 1-м, 2-м, 3-м классах мы изучали различные плоские геометрические фигуры, а также учились их строить. Я предлагаю вам построить в координатном угле плоские фигуры по данным координатам.

Задание выполняется на печатных бланках.

Постройте фигуру, если известны координаты А (0; 2), В (2; 5), С (9; 2). Какая фигура получилась?

Постройте прямоугольник, если точки А (3; 2) и В (6; 5) – его противоположные вершины. Назовите координаты противоположных вершин. Как по-другому называется эта фигура?

Постройте фигуру, если известны координаты ее вершин А (2; 3), В (2; 6), С (5; 8), D (8; 6), K (8; 3), М (5; 1). Какая фигура получилась?

– Как можно назвать все эти фигуры?

Дети. Это многоугольники.

Что называют гранями многогранника ребрами вершинами

У. Нам известно, что все многоугольники имеют вершины и стороны. Назовите и покажите их.

По одному человеку от группы выполняют задание у доски.

III. Знакомство с новым материалом

У. Сегодня я познакомлю вас с объемными геометрическими фигурами, которые называются многоугольниками. Их модели представлены у вас на столах.

На столах у учащихся объемные фигуры: куб, параллелепипед, пирамиды, призмы.

– Садитесь поудобнее, смотрите внимательно, слушайте старательно и запоминайте.

Знакомство с понятиями «многогранник», «грань», «вершина», «ребро»

– Если взять 4 треугольника, то можно создать объемную фигуру – пирамиду. Из квадратов можно получить другую фигуру – куб, из прямоугольников – параллелепипед. У вас на столе еще одна фигура – призма, которая составлена из прямоугольников и треугольников. Все эти фигуры называются многогранниками.

Каждый из многоугольников (в данном случае треугольников) называют гранью многогранника. А стороны многоугольников называют ребрами многогранника. И, конечно же, вершины многоугольника будут вершинами многогранника. Вот так выглядит чертеж многогранника на листе бумаги.

Что называют гранями многогранника ребрами вершинами

– Кажется, что фигура сделана из стекла. Как вы думаете, что изображено пунктиром на чертеже?

Дети работают по рисунку у доски.

У. Назовите и покажите грани многогранника, его ребра и вершины.

Дети показывают указкой и перечисляют.

– Если разрезать пирамиду с вершины до основания по ребрам, то получится вот такая развертка.
А теперь, дорогие мои непоседы, отыщите на столе бланк с изображением многоугольника, внимательно прочитайте инструкцию:

Что называют гранями многогранника ребрами вершинами

Что называют гранями многогранника ребрами вершинами

Что называют гранями многогранника ребрами вершинами

– На доске представлены развертки многогранников. Попробуйте по чертежу отыскать развертку своей фигуры и собрать многогранник. Работайте вместе, и, я думаю, у вас все получится.

Что называют гранями многогранника ребрами вершинами

Проверка выполнения задания (слайды 3, 4, 5).

Что называют гранями многогранника ребрами вершинами

вершин – 8; ребер – 12; граней – 6;
вершины – M, B, C, A, X, K, O, T;
ребра – MB, MA, MT, TX, TO, XK, XA, KO, KC, CB, AC, BO;
грани – MBOT, MBCA, KCBO, TXKO, ACKX, MAXT.

Что называют гранями многогранника ребрами вершинами

вершин – 8; ребер – 12; граней – 6;
вершины – M, B, C, A, X, K, O, T;
ребра – MB, MA, MT, TX, TO, XK, XA, KO, KC, CB, AC, BO;
грани – MBOT, MBCA, KCBO, TXKO, ACKX, MAXT.

Что называют гранями многогранника ребрами вершинами

вершин – 12; ребер – 18; граней – 8;
вершины – Y, B, A, X, N, M, P, E, D, F, L, C;
ребра – YB, YX, BA, XA, XN, NM, AM, ME, EP, NP, ED, PF, DF, FL, LC, CD, LY, CB;
грани – BAMEDC, YXNPFL, YBAX, XAMN, NMEP, EDFP, DFLC, CLYB.

IV. Обобщение и систематизация знаний

У. Скажите, есть ли в окружающем нас мире предметы, которые имеют форму многогранников?

Выслушиваются ответы детей. Проводится импровизированная «прогулка» по школьному двору. Дети «рассматривают» модели школьного здания, подсобных помещений, которые имеют вид многогранников.

Волк и Заяц склеили из цветной бумаги домик. Сколько граней каждого цвета потребовалось? Форму какого многоугольника имеет грань каждого цвета?

Волк и Заяц склеили из цветной бумаги модель нового здания нашей школы.

Сколько граней имеет модель здания?

Форму какого многоугольника имеет грань каждого цвета?

Сколько граней каждого цвета понадобилось?

V. Закрепление ранее изученного

У. Ребята, представьте себя архитекторами, дизайнерами или строителями и попробуйте решить задачи.

Задание для группы 1

Найдите площадь, которую будет занимать новое школьное здание, если его длина 74 м, а ширина – 13 м. (Ответ: 962 кв. м.)

Задание для группы 2

Площадь игровой площадки во дворе нашей школы равна 1080 кв. м. Это на 1320 кв. м меньше, чем площадь хоккейной площадки. Вычислите площадь хоккейной площадки. (Ответ: 2400 кв. м)

Задание для группы 3

Под строительство нового здания для нашей школы отведен участок площадью 2500 кв. м. Известно, что здание будет шириной 13 м, длиной 74 м. Какая площадь участка останется под цветники и дорожки после постройки здания? (Ответ: 1) 962 кв. м; 2) 1538 кв. м)

Дети проверяют решения задач, объясняют, как решали.

VI. Итог урока

У. Оказывается, Роджер Бэкон был прав, сказав: «Тот, кто не знает математики, не может изучить другие науки и не может познать мир».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *