Что называют электроемкостью 2 х проводников формула формулировка
Что называют электроемкостью 2 х проводников формула формулировка
При каком условии можно накопить на проводниках большой электрический заряд?
В сильном электрическом поле (при большом напряжении и соответственно при большой напряженности) диэлектрик (например, воздух) становится проводящим.
Возможен так называемый пробой диэлектрика: между проводниками проскакивает искра, и они разряжаются.
Чем меньше увеличивается напряжение между проводниками с увеличением их зарядов, тем больший заряд можно на них накопить.
Введем физическую величину, характеризующую способность двух проводников накапливать электрический заряд.
Эту величину называют электроемкостью.
Поэтому отношение заряда q одного из проводников (на другом находится такой же по модулю заряд) к разности потенциалов между этим проводником и соседним не зависит от заряда.
Оно определяется геометрическими размерами проводников, их формой и взаимным расположением, а также электрическими свойствами окружающей среды.
Это позволяет ввести понятие электроемкости двух проводников.
Электроемкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между ними:
Электроёмкость уединённого проводника равна отношению заряда проводника к его потенциалу, если все другие проводники бесконечно удалены и потенциал бесконечно удалённой точки равен нулю.
На проводниках можно накопить большие заряды, не вызывая пробоя диэлектрика.
Но сама электроемкость не зависит ни от сообщенных проводникам зарядов, ни от возникающего между ними напряжения.
Формула (14.22) позволяет ввести единицу электроемкости.
Эту единицу называют фарад (Ф); 1 Ф = 1 Кл/В.
Систему проводников очень большой электроемкости вы можете обнаружить в любом радиоприемнике или купить в магазине. Называется она конденсатором. Сейчас вы узнаете, как устроены подобные системы и от чего зависит их электроемкость.
Большой электроемкостью обладают системы из двух проводников, называемые конденсаторами. Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники в этом случае называются обкладками конденсатора.
Простейший плоский конденсатор состоит из двух одинаковых параллельных пластин, находящихся на малом расстоянии друг от друга (рис.14.33).
Если заряды пластин одинаковы по модулю и противоположны по знаку, то силовые линии электрического поля начинаются на положительно заряженной обкладке конденсатора и оканчиваются на отрицательно заряженной (рис.14.28). Поэтому почти все электрическое поле сосредоточено внутри конденсатора и однородно.
Для зарядки конденсатора нужно присоединить его обкладки к полюсам источника напряжения, например к полюсам батареи аккумуляторов. Можно также первую обкладку соединить с полюсом батареи, у которой другой полюс заземлен, а вторую обкладку конденсатора заземлить. Тогда на заземленной обкладке останется заряд, противоположный по знаку и равный по модулю заряду незаземленной обкладки. Такой же по модулю заряд уйдет в землю.
Под зарядом конденсатора понимают абсолютное значение заряда одной из обкладок.
Электроемкость конденсатора определяется формулой (14.22).
Электрические поля окружающих тел почти не проникают внутрь конденсатора и не влияют на разность потенциалов между его обкладками. Поэтому электроемкость конденсатора практически не зависит от наличия вблизи него каких-либо других тел.
Электроемкость плоского конденсатора.
Геометрия плоского конденсатора полностью определяется площадью S его пластин и расстоянием d между ними. От этих величин и должна зависеть емкость плоского конденсатора.
Чем больше площадь пластин, тем больший заряд можно на них накопить: q
S. С другой стороны, напряжение между пластинами согласно формуле (14.21) пропорционально расстоянию d между ними. Поэтому емкость
Кроме того, емкость конденсатора зависит от свойств диэлектрика между пластинами. Так как диэлектрик ослабляет поле, то электроемкость при наличии диэлектрика увеличивается.
Проверим на опыте зависимости, полученные нами из рассуждений. Для этого возьмем конденсатор, у которого расстояние между пластинами можно изменять, и электрометр с заземленным корпусом (рис.14.34). Соединим корпус и стержень электрометра с пластинами конденсатора проводниками и зарядим конденсатор. Для этого нужно коснуться наэлектризованной палочкой пластины конденсатора, соединенной со стержнем. Электрометр покажет разность потенциалов между пластинами.
Раздвигая пластины, мы обнаружим увеличение разности потенциалов. Согласно определению электроемкости (см. формулу (14.22)) это указывает на ее уменьшение. В соответствии с зависимостью (14.23) электроемкость действительно должна уменьшаться с увеличением расстояния между пластинами.
Кроме того, ёмкость конденсатора зависит от свойств диэлектрика между пластинами. Так как диэлектрик ослабляет поле, то электроёмкость при наличии диэлектрика увеличивается: где ε — диэлектрическая проницаемость диэлектрика.
Последовательное и параллельное соединения конденсаторов. На практике конденсаторы часто соединяют различными способами. На рисунке 14.40 представлено последовательное соединение трёх конденсаторов.
Определить эквивалентную электроёмкость — это значит определить электроёмкость такого конденсатора, который при той же разности потенциалов будет накапливать тот же заряд q, что и система конденсаторов.
Воспользовавшись формулой (14.23), запишем:
На рисунке 14.41 представлена схема параллельно соединённых конденсаторов. Разность потенциалов между пластинами всех конденсаторов одинакова и равна:
Заряды на пластинах конденсаторов
На эквивалентном конденсаторе ёмкостью Сэкв заряд на пластинах при той же разности потенциалов
Для электроёмкости, согласно формуле (14.23) запишем: CэквU = C1U + C2U + C3U, следовательно, Сэкв = C1+ С2 + С3, и в общем случае
Различные типы конденсаторов.
В зависимости от назначения конденсаторы имеют различное устройство. Обычный технический бумажный конденсатор состоит из двух полосок алюминиевой фольги, изолированных друг от друга и от металлического корпуса бумажными лентами, пропитанными парафином. Полоски и ленты туго свернуты в пакет небольшого размера.
В радиотехнике широко применяют конденсаторы переменной электроемкости (рис.14.35). Такой конденсатор состоит из двух систем металлических пластин, которые при вращении рукоятки могут входить одна в другую. При этом меняются площади перекрывающихся частей пластин и, следовательно, их электроемкость. Диэлектриком в таких конденсаторах служит воздух.
Значительного увеличения электроемкости за счет уменьшения расстояния между обкладками достигают в так называемых электролитических конденсаторах (рис.14.36). Диэлектриком в них служит очень тонкая пленка оксидов, покрывающих одну из обкладок (полосу фольги). Другой обкладкой служит бумага, пропитанная раствором специального вещества (электролита).
Конденсаторы позволяют накапливать электрический заряд. Электроемкость плоского конденсатора пропорциональна площади пластин и обратно пропорциональна расстоянию между пластинами. Кроме того, она зависит от свойств диэлектрика между обкладками.
§ 97. Электроёмкость. Единицы электроёмкости. Конденсатор
Предположите, при каком условии можно накопить на проводниках большой электрический заряд.
При электризации двух проводников между ними появляется электрическое поле и возникает разность потенциалов (напряжение). С увеличением заряда проводников электрическое поле между ними усиливается.
В сильном электрическом поле возможен так называемый пробой диэлектрика: между проводниками проскакивает искра, и они разряжаются. Чем меньше увеличивается напряжение и соответственно напряжённость поля между проводниками с увеличением их зарядов, тем больший заряд можно на них накопить.
Запомни
Физическая величина, характеризующая способность проводников накапливать электрический заряд, называется электроёмкостью.
Важно
отношение заряда q одного из проводников к разности потенциалов между проводниками не зависит от заряда. Оно определяется геометрическими размерами проводников, их формой и взаимным расположением, а также электрическими свойствами окружающей среды.
Это позволяет ввести понятие электроёмкости двух проводников.
Запомни
Электроёмкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между ними:
Электроёмкость уединённого проводника равна отношению заряда проводника к его потенциалу, если все другие проводники бесконечно удалены и потенциал бесконечно удалённой точки равен нулю.
Чем больше электроёмкость, тем больший заряд скапливается на проводниках при одном и том же напряжении. Обратим внимание, что сама электроёмкость не зависит ни от сообщённых проводникам зарядов, ни от возникающего между ними напряжения.
Единицей электроёмкости в СИ является фарад.
Конденсатор
Слово «конденсатор» в переводе на русский язык означает «сгуститель». В данном случае — «сгуститель электрического поля».
Конденсатор представляет собой два проводника, разделённые слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.
Запомни
Проводники конденсатора называются обкладками.
Простейший плоский конденсатор состоит из двух одинаковых параллельных пластин, находящихся на малом расстоянии друг от друга (рис. 14.39).
Важно
Если заряды пластин одинаковы по модулю и противоположны по знаку, то силовые линии электрического поля начинаются на положительно заряженной обкладке конденсатора и оканчиваются на отрицательно заряженной. Поэтому почти всё электрическое поле сосредоточено внутри конденсатора и однородно.
Для зарядки конденсатора нужно присоединить его обкладки к полюсам источника напряжения, например к полюсам батареи аккумуляторов. Можно также первую обкладку соединить с полюсом батареи, у которой другой полюс заземлён, а вторую обкладку конденсатора заземлить. Тогда на заземлённой обкладке останется заряд, противоположный по знаку и равный по модулю заряду незазем- лённой обкладки. Такой же по модулю заряд уйдёт в землю.
Заземление проводников — это соединение их с землёй (очень большим проводником) с помощью металлических листов в земле, водопроводных труб и т. д.
Важно
Под зарядом конденсатора понимают абсолютное значение заряда одной из обкладок.
Электроёмкость конденсатора определяется формулой (14.22).
Электрические поля окружающих тел почти не проникают внутрь конденсатора и не влияют на разность потенциалов между его обкладками. Поэтому электроёмкость конденсатора практически не зависит от наличия вблизи него каких-либо других тел.
Электроемкость. Конденсаторы
Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников. Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.
Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:
В системе СИ единица электроемкости называется фарад (Ф):
Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, – обкладками.
Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика. Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами (рис. 1.6.1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рис. 1.6.2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля.
Поле плоского конденсатора
Идеализированное представление поля плоского конденсатора. Такое поле не обладает свойством потенциальности
Каждая из заряженных пластин плоского конденсатора создает вблизи поверхности электрическое поле, модуль напряженности которого выражается соотношением:
Согласно принципу суперпозиции, напряженность поля, создаваемого обеими пластинами, равна сумме напряженностей и полей каждой из пластин:
Внутри конденсатора вектора и параллельны; поэтому модуль напряженности суммарного поля равен:
Вне пластин вектора и направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q / S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:
Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:
Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы. Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2. Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L. Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами: сферический конденсатор:
цилиндрический конденсатор:
Конденсаторы могут соединяться между собой, образуя батареи конденсаторов. При параллельном соединении конденсаторов (рис. 1.6.3) напряжения на конденсаторах одинаковы: U1 = U2 = U, а заряды равны q1 = С1U и q2 = C2U. Такую систему можно рассматривать как единый конденсатор электроемкости C, заряженный зарядом q = q1 + q2 при напряжении между обкладками равном U. Отсюда следует
Таким образом, при параллельном соединении электроемкости складываются.
Последовательное соединение конденсаторов.
При последовательном соединении (рис. 1.6.4) одинаковыми оказываются заряды обоих конденсаторов: q1 = q2 = q, а напряжения на них равны и Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U1 + U2. Следовательно,
При последовательном соединении конденсаторов складываются обратные величины емкостей.
Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.
Физика. 10 класс
§ 22-3. Электрическая ёмкость. Электрическая ёмкость уединённого проводника
Проводники и системы, состоящие из нескольких проводников, обладают свойством накапливать электрический заряд. Какая физическая величина характеризует это свойство?
Электрическая ёмкость. Для характеристики свойства проводника накапливать электрический заряд ввели физическую величину — электрическую ёмкость С. Для объяснения физического смысла этой величины рассмотрим следующий опыт: присоединим тонким длинным проводником к стержню электрометра с заземлённым корпусом уединённый полый металлический шар.
Проводник считают уединённым, если он расположен вдали от возможных источников электрического поля как проводящих, так и непроводящих тел. Если вблизи заряженного проводника находятся другие тела, то вследствие явления электростатической индукции в проводниках происходит перераспределение свободных электрических зарядов — возникают индуцированные заряды, а в диэлектриках — смещение в противоположные стороны разноимённых зарядов, входящих в состав атомов вещества, приводящее к возникновению поляризационных зарядов. Поляризационные заряды, возникающие в диэлектриках, и заряды, индуцируемые на проводниках, создают дополнительное электростатическое поле, изменяющее потенциал заряженного проводника.
Прямая пропорциональная зависимость между потенциалом и электрическим зарядом справедлива не только для уединённых шарообразных проводников, но и для любого уединённого проводника произвольной формы. Необходимо только, чтобы форма и размеры проводника, а также диэлектрические свойства среды, в которой он находится, оставались неизменными.
Электрическая ёмкость уединённого проводника — физическая скалярная величина, количественно характеризующая способность проводника накапливать электрический заряд и равная отношению заряда проводника к его потенциалу:
Отметим, что электрическая ёмкость является характеристикой уединённого проводника и не зависит ни от наличия избыточного заряда, ни от его потенциала. Поскольку заряды располагаются только на внешней поверхности проводника, то ни от вещества, из которого он изготовлен, ни от его массы электроёмкость проводника также не зависит. Она зависит только от формы и размеров проводника, а также от диэлектрической проницаемости среды, в которой этот уединённый проводник находится. Например, электроёмкость уединённого проводящего шара радиусом R, находящегося в безграничной однородной среде с диэлектрической проницаемостью ε, определяют по формуле
Единицей электрической ёмкости в СИ является фарад (Ф).
1 Ф — очень большая электроёмкость. Электроёмкостью С = 1 Ф обладал бы находящийся в вакууме уединённый шар радиусом R = 9 ∙ 10 9 м (для сравнения: радиус земного шара RЗ = 6,4 ∙ 10 6 м ). Поэтому на практике применяют дольные единицы: микрофарад ( 1 мкФ = 1 ∙ 10 –6 Ф ), нанофарад ( 1 нФ = 1 ∙ 10 –9 Ф ) и пикофарад ( 1 пФ = 1 ∙ 10 –12 Ф ).
Из истории физики
В XVII-XVIII в. учёные рассматривали электричество как нематериальную жидкость. Эта жидкость могла вливаться в проводник и выливаться из него. Так появился термин «электрическая ёмкость».
1. Какой проводник можно считать уединённым?
2. Что называют электрической ёмкостью уединённого проводника?
3. От чего зависит электроёмкость уединённого проводника?
4. Обладает ли электроёмкостью незаряженный проводник?
5. Можно ли, проанализировав формулу для расчёта электроёмкости уединённого проводника, утверждать, что его электроёмкость зависит от заряда и потенциала проводника?
6. Два проводящих заряженных шара приводят в соприкосновение. Как распределятся заряды на шарах, если один из них алюминиевый, а другой стальной и радиусы шаров одинаковые?