Что называют допускаемой погрешностью измерения

Погрешность измерений. Классификация

Погрешность средств измерения и результатов измерения.

Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).
Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины.

Инструментальные и методические погрешности.

Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений. Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели.

Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.

Инструментальная погрешность обусловлена несовершенством применяемых средств измерений. Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы.

Статическая и динамическая погрешности.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Систематическая и случайная погрешности.

Систематическая погрешность измерения – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности являются в общем случае функцией измеряемой величины, влияющих величин (температуры, влажности, напряжения питания и пр.) и времени. В функции измеряемой величины систематические погрешности входят при поверке и аттестации образцовых приборов.

Причинами возникновения систематических составляющих погрешности измерения являются:

Случайной погрешностью называют составляющие погрешности измерений, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются совместным действием ряда причин: внутренними шумами элементов электронных схем, наводками на входные цепи средств измерений, пульсацией постоянного питающего напряжения, дискретностью счета.

Погрешности адекватности и градуировки.

Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешностью адекватности модели называют погрешность при выборе функциональной зависимости. Характерным примером может служить построение линейной зависимости по данным, которые лучше описываются степенным рядом с малыми нелинейными членами.

Погрешность адекватности относится к измерениям для проверки модели. Если зависимость параметра состояния от уровней входного фактора задана при моделировании объекта достаточно точно, то погрешность адекватности оказывается минимальной. Эта погрешность может зависеть от динамического диапазона измерений, например, если однофакторная зависимость задана при моделировании параболой, то в небольшом диапазоне она будет мало отличаться от экспоненциальной зависимости. Если диапазон измерений увеличить, то погрешность адекватности сильно возрастет.

Абсолютная, относительная и приведенная погрешности.

Абсолютная погрешность – алгебраическая разность между номинальным и действительным значениями измеряемой величины. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина, в расчетах её принято обозначать греческой буквой – ∆. На рисунке ниже ∆X и ∆Y – абсолютные погрешности.

Относительная погрешность – отношение абсолютной погрешности к тому значению, которое принимается за истинное. Относительная погрешность является безразмерной величиной, либо измеряется в процентах, в расчетах обозначается буквой – δ.

Приведённая погрешность – погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

где Xn – нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.

Аддитивные и мультипликативные погрешности.

Различать аддитивные и мультипликативные погрешности легче всего по полосе погрешностей (см.рис.).

Если абсолютная погрешность не зависит от значения измеряемой величины, то полоса определяется аддитивной погрешностью (а). Иногда аддитивную погрешность называют погрешностью нуля.

Если постоянной величиной является относительная погрешность, то полоса погрешностей меняется в пределах диапазона измерений и погрешность называется мультипликативной (б). Ярким примером аддитивной погрешности является погрешность квантования (оцифровки).

Класс точности измерений зависит от вида погрешностей. Рассмотрим класс точности измерений для аддитивной и мультипликативной погрешностей:

– для аддитивной погрешности:
аддитивная погрешность
где Х – верхний предел шкалы, ∆0 – абсолютная аддитивная погрешность.
– для мультипликативной погрешности:
мультипликативная погрешность
порог чувствительности прибора – это условие определяет порог чувствительности прибора (измерений).

Источник

Погрешность измерений

Неотъемлемой частью любого измерения является погрешность измерений. С развитием приборостроения и методик измерений человечество стремиться снизить влияние данного явления на конечный результат измерений. Предлагаю более детально разобраться в вопросе, что же это такое погрешность измерений.

Погрешность измерения – это отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерений представляет собой сумму погрешностей, каждая из которых имеет свою причину.

По форме числового выражения погрешности измерений подразделяются на абсолютные и относительные

Абсолютная погрешность – это погрешность, выраженная в единицах измеряемой величины. Она определяется выражением.

Что называют допускаемой погрешностью измерения(1.2), где X — результат измерения; Х0 — истинное значение этой величины.

Поскольку истинное значение измеряемой величины остается неизвестным, на практике пользуются лишь приближенной оценкой абсолютной погрешности измерения, определяемой выражением

Что называют допускаемой погрешностью измерения(1.3), где Хд — действительное значение этой измеряемой величины, которое с погрешностью ее определения принимают за истинное значение.

Относительная погрешность – это отношение абсолютной погрешности измерения к действительному значению измеряемой величины:

Что называют допускаемой погрешностью измерения(1.4)

По закономерности появления погрешности измерения подразделяются на систематические, прогрессирующие, и случайные .

Систематическая погрешность – это погрешность измерения, остающаяся постоянной или закономерно изменяющейся при повторных измерениях одной и той же величины.

Прогрессирующая погрешность – это непредсказуемая погрешность, медленно меняющаяся во времени.

Систематические и прогрессирующие погрешности средств измерений вызываются:

Систематическая погрешность остается постоянной или закономерно изменяющейся при многократных измерениях одной и той же величины. Особенность систематической погрешности состоит в том, что она может быть полностью устранена введением поправок. Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы только в данный момент времени. Они требуют непрерывной коррекции.

Случайная погрешность – это погрешность измерения изменяется случайным образом. При повторных измерениях одной и той же величины. Случайные погрешности можно обнаружить только при многократных измерениях. В отличии от систематических погрешностей случайные нельзя устранить из результатов измерений.

По происхождению различают инструментальные и методические погрешности средств измерений.

Инструментальные погрешности — это погрешности, вызываемые особенностями свойств средств измерений. Они возникают вследствие недостаточно высокого качества элементов средств измерений. К данным погрешностям можно отнести изготовление и сборку элементов средств измерений; погрешности из-за трения в механизме прибора, недостаточной жесткости его элементов и деталей и др. Подчеркнем, что инструментальная погрешность индивидуальна для каждого средства измерений.

Методическая погрешность — это погрешность средства измерения, возникающая из-за несовершенства метода измерения, неточности соотношения, используемого для оценки измеряемой величины.

Погрешности средств измерений.

Абсолютная погрешность меры – это разность между номинальным ее значением и истинным (действительным) значением воспроизводимой ею величины:

Что называют допускаемой погрешностью измерения(1.5), где Xн – номинальное значение меры; Хд – действительное значение меры

Абсолютная погрешность измерительного прибора – это разность между показанием прибора и истинным (действительным) значением измеряемой величины:

Что называют допускаемой погрешностью измерения(1.6), где Xп – показания прибора; Хд – действительное значение измеряемой величины.

Относительная погрешность меры или измерительного прибора – это отношение абсолютной погрешности меры или измерительного прибора к истинному

(действительному) значению воспроизводимой или измеряемой величины. Относительная погрешность меры или измерительного прибора может быть выражена в ( % ).

Что называют допускаемой погрешностью измерения(1.7)

Приведенная погрешность измерительного прибора – отношение погрешности измерительного прибора к нормирующему значению. Нормирующие значение XN – это условно принятое значение, равное или верхнему пределу измерений, или диапазону измерений, или длине шкалы. Приведенная погрешность обычно выражается в ( % ).

Что называют допускаемой погрешностью измерения(1.8)

Основная – это погрешность средства измерений, используемого в нормальных условиях, которые обычно определены в нормативно-технических документах на данное средство измерений.

Дополнительная – это изменение погрешности средства измерений вследствии отклонения влияющих величин от нормальных значений.

Статическая – это погрешность средства измерений, используемого для измерения постоянной величины. Если измеряемая величина является функцией времени, то вследствие инерционности средств измерений возникает составляющая общей погрешности, называется динамической погрешностью средств измерений.

Также существуют систематические и случайные погрешности средств измерений они аналогичны с такими же погрешностями измерений.

Факторы влияющие на погрешность измерений.

Погрешности возникают по разным причинам: это могут быть ошибки экспериментатора или ошибки из-за применения прибора не по назначению и т.д. Существует ряд понятий которые определяют факторы влияющие на погрешность измерений

Вариация показаний прибора – это наибольшая разность показаний полученных при прямом и обратном ходе при одном и том же действительном значении измеряемой величины и неизменных внешних условиях.

Класс точности прибора – это обобщенная характеристика средств измерений (прибора), определяемая пределами допускаемых основной и дополнительных погрешностей, а также другими свойствами средств измерений, влияющих на точность, значение которой устанавливаются на отдельные виды средств измерений.

Классы точности прибора устанавливают при выпуске, градуируя его по образцовому прибору в нормальных условиях.

Прецизионность — показывает, как точно или отчетливо можно произвести отсчет. Она определяется, тем насколько близки друг к другу результаты двух идентичных измерений.

Разрешение прибора — это наименьшее изменение измеряемого значения, на которое прибор будет реагировать.

Диапазон прибора — определяется минимальным и максимальным значением входного сигнала, для которого он предназначен.

Полоса пропускания прибора — это разность между минимальной и максимальной частотой, для которых он предназначен.

Чувствительность прибора — определяется, как отношение выходного сигнала или показания прибора к входному сигналу или измеряемой величине.

Шумы — любой сигнал не несущий полезной информации.

Источник

Что называют допускаемой погрешностью измерения

Всероссийский научно-исследовательский институт
оптико-физических измерений

ПОИСК И НАВИГАЦИЯ

МЫ НА YOUTUBE

Погрешности средств измерений

Погрешность средства измерений (англ. error (of indication) of a measuring instrument) – разность между показанием средства измерений и истинным (действительным) значением измеряемой физической величины.

Систематическая погрешность средства измерений (англ. bias error of a measuring instrument) – составляющая погрешности средства измерений, принимаемая за постоянную или закономерную изменяющуюся.
Примечание. Систематическая погрешность данного средства измерений, как правило, будет отличаться от систематической погрешности другого экземпляра средства измерений этого же типа, вследствие чего для группы однотипных средств измерений систематическая погрешность может иногда рассматриваться как случайная погрешность.

Случайная погрешность средства измерений (англ. repeatability error of a measuring instrument) – составляющая погрешности средства измерений, изменяющаяся случайным образом.

Абсолютная погрешность средства измерений – погрешность средства измерений, выраженная в единицах измеряемой физической величины.

Относительная погрешность средства измерений – погрешность средства измерений, выраженная отношением абсолютной погрешности средства измерений к результату измерений или к действительному значению измеренной физической величины.

Приведенная погрешность средства измерений (англ. reducial error of a measuring instrument) – относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона.
Примечания:

Основная погрешность средства измерений (англ. intrinsic error of a measuring instrument) – погрешность средства измерений, применяемого в нормальных условиях.

Дополнительная погрешность средства измерений (англ. complementary error of a measuring instrument) – составляющая погрешности средства измерений, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения или вследствие ее выхода за пределы нормальной области значений.

Статическая погрешность средства измерений – погрешность средства измерений, применяемого при измерении физической величины, принимаемой за неизменную.

Динамическая погрешность средства измерений – погрешность средства измерений, возникающая при измерении изменяющейся (в процессе измерений) физической величины.

Погрешность меры – разность между номинальным значением меры и действительным значением воспроизводимой ею величины.

Стабильность средства измерений (англ. stability) – качественная характеристика средства измерений, отражающая неизменность во времени его метрологических характеристик.
Примечание. В качестве количественной оценки стабильности служит нестабильность средства измерений.

Нестабильность средства измерений – изменение метрологических характеристик средства измерений за установленный интервал времени.
Примечания:

Точность средства измерений (англ. accuracy of a measuring instrument) – характеристика качества средства измерений, отражающая близость его погрешности к нулю.
Примечание. Считается, что чем меньше погрешность, тем точнее средство измерений.

Класс точности средств измерений (англ. accuracy class) – обобщенная характеристика данного типа средств измерений, как правило, отражающая уровень их точности, выражаемая пределами допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность.
Примечания:

Предел допускаемой погрешности средства измерений – наибольшее значение погрешности средств измерений, устанавливаемое нормативным документом для данного типа средств измерений, при котором оно еще признается годным к применению.
Примечания:

Пример. Для 100-миллиметровой концевой меры длины 1-го класса точности пределы допускаемой погрешности +/- 50 мкм.

Нормируемые метрологические характеристики типа средства измерений – совокупность метрологических характеристик данного типа средств измерений, устанавливаемая нормативными документами на средства измерений.

Точностные характеристики средства измерений – совокупность метрологических характеристик средства измерений, влияющих на погрешность измерения.
Примечание. К точностным характеристикам относят погрешность средства измерений, нестабильность, порог чувствительности, дрейф нуля и др.

Источник

Погрешности средств измерений

Практическая работа

Оценка погрешности показаний

Цель работы: научиться производить расчеты абсолютной и относительной погрешности при измерениях.

Краткие теоретические сведения

Любой результат измерения содержит погрешность.

Погрешность измерений —это отклонение значений величины,найденной путем ее измерения, от истинного (действительного) значения отклоняемой величины.

Погрешность прибора —это разность между показанием прибора иистинным (действительным) значением измеряемой величины.

При анализе измерений сравнивают истинные значения физических величин с результатами измерений. Отклонение результатов измерений (X) от истинного значения измеряемой величины ( Х И С Т ) называют погрешностью измерений ().

Что называют допускаемой погрешностью измерения Что называют допускаемой погрешностью измеренияХ = Х-ХИСТ. (1)

По форме числового выражения погрешности измерений под-разделяются па абсолютные и относительные.

Абсолютной называют погрешность измерения, выраженную в тех же единицах, что и измеряемая величина.

Например, 0,25В; 0,006 мм и т.д. Абсолютная погрешность определяется по формулам (1) и (2). Практического применения абсолютные погрешности не имеют. Например, по образцовому вольтметру сравнивали показания двух рабочих вольтметров. Измеряли напряжение 10 В и получили погрешность 0,4 В, а другим — измеряли напряжение 1000 В и получили погрешность 10 В. На первый взгляд более точным кажется первый вольтметр, так как у него меньшая погрешность. Однако достоверную оценку приборов можно получить, используя относительную погрешность.

Относительная погрешность δ, равна отношению абсолютной погрешности к действительному значению измеряемой:

Основные метрологические термины и определения: по РМГ 29-99 (с изменениями от 04.08.2010)
δ = ( Х / Хдейст.) ∙ 100%.(3)

Что называют допускаемой погрешностью измерения

Определим относительную погрешность вольтметров предыдущего примера: для первого вольтметра δ = (0,4/10)∙100% = 4 %, а для второго вольтметра δ = (10/1000) ∙100 % = 1 %.

Как видно из примеров, меньшей относительной погрешностью обладает второй вольтметр.

Погрешности измерений

Погрешности измерений обычно классифицируют по причинам их возникновения и по видам погрешностей.

В зависимости от причин возникновения выделяют следующие погрешности измерений.

Погрешность метода —это составляющая погрешности измерения,являющаяся следствием несовершенства метода измерений.

Суммарная погрешность метода измерения определяется совокупностью погрешностей отдельных его составляющих (погрешности показаний прибора и блока концевых мер, погрешности, вызванные изменением температурных условий, и т.п.).

Погрешность отсчета это составляющая погрешности измерения, являющаяся следствием недостаточно точного отсчета показаний средства измерений и зависящая от индивидуальных способностей наблюдателя.

Погрешность отсчета можно разделить на две составляющие: погрешность интерполяции и погрешность от параллакса.

Погрешность интерполяции при отсчитывании происходит от недостаточно точной оценки на глаз доли шкалы, соответствующей положению указателя (например, стрелки прибора).

Погрешность от параллакса возникает вследствие визирования (наблюдения) стрелки, расположенной на некотором расстоянии от поверхности шкалы.

Случайные погрешности — составляющие погрешности измерения, изменяющиеся случайным образом при повторных измерениях одной и той же величины.

Случайными являются погрешности, возникающие вследствие нестабильности показаний измерительного прибора, колебаний температурного режима в процессе измерения и т.д.

Эти погрешности нельзя установить заранее, но можно учесть в результате математической обработки данных многократных измерений, изменяющихся случайным образом при измерении одной и той же величины.

К грубым погрешностям относятся случайные погрешности, зна-чительно превосходящие погрешности, ожидаемые при данных условиях измерения.

Причинами, вызывающими грубые погрешности, могут быть, например, неправильный отсчет по шкале прибора, неправильная установка детали в процессе измерения и т.д.

От погрешности измерения зависит точность измерения, которая является качеством измерения и отражает близость его результата к истинному значению измеряемой величины. Высокая точность измерений соответствует малым погрешностям.

Погрешности средств измерений

Инструментальная погрешность составляющая погрешности измерения и зависит от применяемых средств измерений.

Различают основную и дополнительную погрешности средств измерений.

За основную погрешность принимают погрешность средства изме-рения, используемого в нормальных условиях.

Дополнительная погрешность складывается из дополнительных погрешностей измерительного преобразователя и меры, вызванных отклонением от нормальных условий.

Например, если при настройке прибора для измерения методом сравнения с мерой температура меры отличается от нормальной, то это

приведет к погрешности настройки прибора на нуль и соответственно к погрешности измерений.

Погрешность средств измерений нормируют установлением предела допускаемой погрешности.

Предел допускаемой погрешности средства измерения — наибольшая (без учета знака) погрешность средства измерения, при которой оно может быть признано годным и допущено к применению.

Все перечисленные погрешности подразделяются по виду на систематические, случайные и грубые.

Под систематическимипонимают погрешности,постоянные илизакономерно изменяющиеся при повторных измерениях одной и той же величины.

Выявленные систематические погрешности могут быть исключены из результатов измерений путем введения соответствующих поправок. Например, получили абсолютную погрешность вольтметра +2 В. Тогда при последующих измерениях этим вольтметром мы должны вычитать 2 В из показаний, так как поправка берется с противоположным знаком, чем погрешность, и наоборот прибавлять, если поправка будет со знаком «минус».

Примером систематических погрешностей являются показания прибора при неправильной градуировке шкалы; погрешность мер, по которым производят установку на нуль прибора. От значения си-стематической составляющей погрешности измерений зависит правильность измерений: качество измерений, отражающее близость к нулю систематических погрешностей и их результатов. Чем меньше систематическая погрешность, тем правильнее измерение.

Например, ГОСТ 26433.0—85 устанавливает способы исключения систематических погрешностей.

Исключение известных систематических погрешностей из результатов наблюдений или измерений выполняют введением поправок к этим результатам. Поправки по абсолютному значению равны этим погрешностям

и противоположны им по знаку.

Введением поправок исключают:

погрешность,возникающую из-за отклонений действительнойтемпературы окружающей среды при измерении от нормальной;

погрешность,возникающую из-за отклонений атмосферногодавления при измерении от нормального;

погрешность,возникающую из-за отклонений относительнойвлажности окружающего воздуха при измерении от нормальной;

погрешность,возникающую из-за отклонений относительнойскорости движения внешней среды при измерении от нормальной;

погрешность,возникающую вследствие искривления светового луча(рефракции);

погрешность шкалы средства измерения;

погрешность,возникающую вследствие несовпадения направленийлинии измерения и измеряемого размера.

Поправки по указанным погрешностям вычисляют в соответствии с указаниями табл. 1.

Поправки могут не вноситься, если действительная погрешность измерения не превышает предельной.

Пример.Получен результат измерения длины стальной фермы

хi = 24003мм.Измерение выполнялось30-метровой линейкой изнержавеющей стали при t = —20 °С.

Действительную длину хi фермы с учетом поправки на температуру окружающей среды следует принять равной

хi + δχсоr, t = 24003 + 7,7 = 24010,7мм

Не учитываемые погрешности измерений приводят к недостоверным результатам. Например, при контроле продукции, параметры качества которой находятся близко к границе допускаемых значений, из-за погрешностей измерений часть годных изделий может быть забракована, а бракованные изделия могут быть приняты как годные.

Задание 1. Изучить теоретиеский материал, записать определения

Задание 2. Записать пример

Задание 3. Ответить на контрольные вопросы

1. Дайте определение погрешности прибора.

2. Перечислите погрешности средств измерений.

3. Охарактеризуйте случайные погрешности.

4. Какова причина погрешности отсчета?

5. Какова причина грубых погрешностей?

6. Что исключают поправки?

7. Каковы возможные последствия не учета погрешностей?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *