Что называют длиной отрезка 5 класс
Математика. 5 класс
Конспект урока
Перечень рассматриваемых вопросов:
— понятие длины отрезка;
— равные отрезки на чертежах;
— определение длины отрезков.
Длина отрезка – число, которое показывает, сколько раз в отрезке содержится единичный отрезок.
Единичный отрезок – это отрезок, длина которого принята за единицу измерения.
Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др.– М.: Просвещение, 2017. – 272 с.
1. Чулков П. В. Математика: тематические тесты. 5 класс.// П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. –М.: Просвещение, 2009. – 142с.
2. Шарыгин И. Ф. Задачи на смекалку: 5-6 классы. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95с.
Теоретический материал для самостоятельного изучения
Каждому человеку неоднократно приходилось что-то измерять: свой рост, длину прыжка, высоту потолка и многое другое. Все эти действия означают вычисление величины какого-нибудь отрезка. Каким же образом можно измерить длину отрезка? На этот вопрос ответим в ходе урока.
За свою историю человечество придумало много разных единиц длины. Позже появились меры, заимствованные из природы:
— пядь – расстояние между растянутыми большим и указательным пальцами;
— вершок – длина основной фаланги указательного пальца;
— локоть – расстояние от локтевого сустава до конца вытянутого среднего пальца руки.
Некоторые названия сохранились до сих пор: ярд, фут, пядь, дюйм.
Ну, а герои одного известного мультфильма измеряли длину удава в попугаях. В зависимости от того, в ком измеряли удава, он становился то длиннее, то короче.
Два слонёнка, пять мартышек или тридцать восемь попугаев.
«А в попугаях я гораздо длиннее!» – воскликнул удав.
На самом деле мы с вами понимаем, что его размеры не менялись. Тогда возникает вопрос: в чём измерять? Что брать за единицу длины? Слонёнка, попугая или мартышку.
Измерить длину какого-нибудь отрезка в заданных единицах измерения – значит найти число, показывающее, сколько единичных отрезков поместится в данном отрезке.
Длиной отрезка называют число, которое показывает, сколько раз в отрезке содержится единица измерения.
Отрезок, длина которого принята за единицу измерения, называется единичным отрезком.
Чем же можно измерить длину отрезка?
Наиболее древними геометрическими инструментами являются линейка и циркуль, последний был изобретён в первом веке в Древней Греции.
Для более точных измерений используют миллиметровую линейку и штангенциркуль.
Далее построим отрезок ВК заданной длины –например, 8см. Для этого отметим точку В и приложим к ней линейку, совместив точку В с нулём. Затем отмеряем с помощью линейки 8 см, отмечаем точку К и соединяем обе точки линией.
Такой отрезок можно построить и с помощью циркуля. Для этого отметим точку В. Приложим к линейке циркуль, выставив его ножки на восемь сантиметров. Перенесём циркуль к точке В, поместив на неё одну ножку, а другой ножкой поставим точку К. Соединив обе точки линией, получим отрезок с длиной 8 см.
Отрезки можно сравнить с помощью измерителя –например, циркуля. Для этого попеременно подставляем ножки циркуля ко всем предложенным для сравнения отрезкам. При этом они должны быть выставлены по одному из отрезков. Если длины отрезков одинаковы, то отрезки считают равными и пишут CD = КМ.
Если один из отрезков является частью другого, следовательно, он короче. Например, ЕН короче EF, так как отрезок EH является частью EF.
Рассмотрим ещё одно свойство длин.
Если на отрезке АВ отметить точку С, то длина отрезка АВ равна сумме длин отрезков АС и СВ. Пишут: АВ = АС + СВ.
Наши органы чувств – это один из способов получения информации об окружающем нас мире, но информация полученная таким образом, бывает искажена.
Посмотрите на рисунки и ответьте на вопрос, равны ли отрезки?
На первый взгляд покажется, что правый отрезок больше, чем левый, но при сравнении с помощью линейки окажется, что отрезки равны.
Такая же ситуация, складывается и со следующей картинкой. Кажется, что нижний отрезок больше, чем верхний, но при наложении линейки окажется, что отрезки равны.
В другом же случае на тот же вопрос о равенстве отрезков ответ очевиден.
Таким образом, можно сделать вывод, что глазомерные оценки геометрических реальных величин неточны.
Разбор решения заданий тренировочного модуля
№1. Тип задания: выбор элемента из выпадающего списка.
Сравните длины горизонтального и вертикального отрезков?
Правильный ответ: при выполнении данного задания нужно использовать линейку, нужно измерить длину каждого отрезка и сравнить их. В результате измерений мы увидим, что отрезки равны.
№2. Тип задания: выделение цветом.
Точка К расположена на прямой между точками А и В. Длина отрезка АК = 8 см, длина отрезка КВ на 2 см больше длины отрезка АК. Какова длина отрезка АВ?
Выберите правильный ответ: 6 см; 10 см; 12 см; 18 см.
Решение: изобразим условие задачи на рисунке.
Отрезок, длина отрезка, треугольник
Содержание
Измеряли ли вы когда-нибудь путь от дома до школы при помощи шагов? Так вот, шаг – это своего рода отрезок, который имеет свою длину, а путь – расстояние, полученное при сложении таких отрезков.
Давайте приведем другой пример. Вы пошли в поход, используя карту. На данной карте изображен путь и написано расстояние – 100 метров. Что из этого отрезок, а что длина отрезка? Все очень просто! Путь – это весь отрезок, а 100 метров будут являться его длинной.
Итак, давайте поглубже разберемся в том, что же такое отрезок, в чем измеряется его длина, а также рассмотрим одну из основных фигур, которую можно получить из трех отрезков – треугольник.
Отрезок – это прямая линия, ограниченная двумя точками.
Нарисуем точку A и точку B, а затем соединим их линией (рис. 1). Мы получили отрезок AB (можно также назвать его как BA), а A и B являются его концами.
Сможем ли мы соединить точки A и B еще одним отрезком? На самом деле, если мы попытаемся это сделать, то мы просто еще раз начертим отрезок АВ. Значит:
Любые две точки можно соединить только одним отрезком.
Добавим к нашему отрезку еще пару точек: E, K и M (рис. 2). Точку E расположим на отрезке, а две другие – рядом с ним. Мы видим, что точка E лежит на отрезке AB, в то время как точки K и M на нем не лежат.
Рисунок 2
Что же такое длина отрезка?
Все крайне просто, расстояние между точками, а точнее между концами отрезка и называют его длиной. Например, если расстояние между точками N и L – 3 см, то и длина отрезка NL тоже будет 3 см (рис. 3).
Рисунок 3. Длина отрезка NL равна 3 см.
Существует несколько единиц измерения, которые применяют для измерения длины отрезков. Самыми распространенными из них являются:
Каждый отрезок может быть разделен на несколько частей. Возьмем в пример отрезок AB. На данном отрезке находятся точка H, точка I и точка L (рис. 4).
Данные точки делят весь отрезок на 4 части, которые, в нашем случае, будут равны. Таким образом мы получили отрезки AH, HI, IL и LB. Каждый из этих отрезков будет являться лишь частью отрезка AB и всегда будет короче, чем весь отрезок.
Сравнение отрезков
Отрезки можно сравнивать между собой, измеряя их длину при помощи различных измерителей: линеек, циркулей и др. Рассмотрим отрезки PE, QM и KO (рис. 5).
Рисунок 5
Если измерить их длину, то получится, что отрезок PE имеет длину в 5 см, QM в 10 см и KO тоже в 5 см. Теперь давайте их сравним. Если отрезки имеют одинаковую длину, то они равны. В нашем случае это будет выглядеть так: PE = KO.
Отрезок QM имеет большее расстояние между точками, соответственно он длиннее, чем отрезки PE и KO.
Треугольник
Фигуру, составленную из трех отрезков, называют треугольником.
Сами отрезки называются сторонами треугольника, а точки (или концы) отрезков являются вершинами треугольника.
Рассмотрим пример. В треугольнике ABC (рис. 6) отрезки AB, BC и AC являются сторонами, а точки A, B и C – вершинами.
Рисунок 6
Из отрезков можно сделать и другие фигуры, например квадрат, звезду и прочие (рис. 7).
Все фигуры, имеющие более трех углов, называются многоугольниками.
В каждом многоугольнике также есть вершины (точки отрезков) и стороны (сами отрезки).
Урок 3 Бесплатно Отрезок. Длина отрезка
Начнем знакомство с одним из разделов математики, который называется геометрия.
Становление данной науки происходило тысячелетиями.
Сегодня обратим внимание на основные, базовые геометрические фигуры, такие как точка и отрезок.
Узнаем, что называют ломаной линией, какие геометрические фигуры называют многоугольниками, рассмотрим их основные элементы и характеристики.
Научимся сравнивать, находить длины отрезков.
Познакомимся с различными единицами измерения отрезков.
Рассмотрим свойства измерения длин отрезков.
Отрезок
Геометрическая фигура- это математическая модель, в которой рассматривается только форма и размер, не обращая внимания на иные свойства и состояния (цвет, из какого материала изготовлены, в каком состоянии находятся).
Как здания складываются из кирпичиков, так и сложные геометрические фигуры состоят из базовых фигур.
Одной такой элементарной фигурой является точка.
В реальности моделью, которая дает представление о точке может стать, например, след, оставленный острием карандаша, или отверстие на бумаге от швейной иглы.
Слово «точка» с латинского языка означает мгновенное касание, укол.
Точку принято рассматривать как некоторое место в пространстве или на плоскости.
Принято обозначать точки заглавными латинскими буквами (А, В, С и т.д.).
Две точки на плоскости можно соединить бесконечным множеством линий.
Самой короткой линией, соединяющей две точки на плоскости, будет прямая, проведенная по линейке через эти две точки.
Кратчайшая линия между двумя точками называется отрезком.
Любые две точки можно соединить только одним отрезком.
Точки, ограничивающие отрезок, называются концами отрезка.
Отрезок обозначают указанием имен его концов.
Через точки А и В с помощью линейки провели прямую.
Так как отрезок обозначают именами точек, получим отрезок АВ или ВА.
Пишут и говорят так: «Отрезок АВ» или «Отрезок ВА».
В названии отрезка не важно в каком порядке указываются его концы.
Отрезок можно построить с помощью линейки.
Для этого необходимо к отмеченным на плоскости точкам приложить линейку и провести прямую от одного конца отрезка до другого.
Чтобы с помощью линейки начертить отрезок, который длиннее чем сама линейка, нужно поступить следующим образом:
Между точками А и В отметить точку С.
Затем передвинем линейку так, чтобы левый конец линейки оказался около точки С, по правому концу линейки отложим точку D.
Последовательно соединив концы отрезков, получится отрезок AD, который длиннее, чем линейка.
У меня есть дополнительная информация к этой части урока!
Давайте разберемся, как могут располагаться точки по отношению к отрезку:
1. Точка лежит на отрезке.
Говорят: «Точка G принадлежит отрезку ».
Записывают это так: G ∈ AB
2. Точка не лежит на отрезке.
Говорят: «Точка не принадлежит отрезку ».
Записывают это так: R ∉ AB
Пройти тест и получить оценку можно после входа или регистрации
Длина отрезка
Каждый отрезок имеет определенную длину, значение которой является числом.
Так как каждый отрезок имеет длину, отрезки можно измерять и сравнивать.
Существует несколько способов сравнения отрезков.
1. Приблизительный способ сравнения.
Данный способ сравнения применяют только в том случае, когда длины отрезков явно отличаются.
Пример: Даны два отрезка АВ и ЕР
Очевидно, что отрезок АВ длиннее отрезка ЕР, значит, АВ > ЕР
Метод заключается в следующем: совмещаются два отрезка друг с другом так, чтобы совпали их концы с одной стороны.
По расположению других концов относительно друг друга можно оценить какой из отрезков длиннее, а какой короче.
Если при наложении отрезков друг на друга длины отрезков совпадут, то отрезки равны (отрезки в этом случае будут равными фигурами).
Если при наложении отрезков друг на друга один из отрезков будет составлять часть второго, то первый отрезок является короче второго (т.е. длина первого меньше длины второго).
Пример: Даны два отрезка АВ и ОЕ
Сравним данные отрезки методом совмещения отрезков.
Совместим левый конец А отрезка АВ и левый конец О отрезка ОЕ.
Можно заметить, что отрезок ОЕ составляет часть отрезка АВ.
Значит, отрезок ОЕ короче отрезка АВ.
Данный метод удобен, если есть возможность перемещать отрезки, совмещать один с другим.
3. Сравнение отрезков с помощью измерителя.
Если нет возможности перемещать сравниваемые отрезки, то можно использовать промежуточный измеритель.
В математике для этих целей используют специальный чертежный инструмент, который называется циркулем.
Чтобы сравнить отрезки с помощью циркуля, необходимо совместить концы отрезка с ножками циркуля.
Не меняя раствор циркуля, приложить его ко второму отрезку и сравнить.
Если нет возможности сравнить отрезки наложением и нет циркуля под рукой, то в качестве измерителя можно использовать нитку.
В таком случае нужно нитку приложить к исходному отрезку, на нитке по отрезку сделать замер, затем нитку приложить ко второму отрезку, оценить расположение замера на нитке по отношению к исследуемому отрезку, сделать вывод.
Пусть даны три отрезка СD, АЕ, BG
Сравним эти отрезки с помощью циркуля.
Соединим ножки циркуля с концами С и D отрезка СD.
Приложим циркуль с заданным раствором к отрезку АЕ.
Концы измерителя совпали с точками отрезка АЕ, значит, отрезки CD и AE равны: (CD = AE).
Приложим циркуль с заданным раствором к отрезку BG.
Отрезок выходит за концы измерителя, т.е. является частью отрезка BG, следовательно, отрезок BG длиннее отрезка СD: (BG > СD).
Все рассмотренные способы сравнения длины отрезков проводят без определения значения длины сравниваемых отрезков.
4. Существует еще один способ сравнения длины отрезков путем измерения их длинны.
Для этого необходимо сначала измерить длину каждого отрезка, далее сравнить полученные значения их длины и сделать вывод.
Большим будет являться тот отрезок, длина которого больше.
Соответственно, если длины измеряемых отрезков равны, то и отрезки равны.
У меня есть дополнительная информация к этой части урока!
Ломаная линия
Если последовательно соединить отрезки так, чтобы конец одного отрезка являлся началом следующего (при этом соседние отрезки не лежат на одной прямой), то образуется геометрическая фигура, которая называется ломаной линией.
Отрезки, из которых состоит ломаная линия, называют звеньями.
Концы отрезков называют вершинами ломаной.
Самые крайние вершины ломаной называют концами ломаной
Обозначение ломаной линии составляют из названий вершин этой ломаной, называя их по порядку.
Длиной ломаной называется сумма длин всех ее звеньев.
На рисунке изображена ломаная линия АBCDE.
Вершины ломаной АBCDE: А, B, C, D, Е.
Звенья ломаной АBCDE: AB, BC, CD, DE.
Найдем длину ломаной АВСDE:
АВСDE = AB+ BC+ CD+ DE = 2 см + 3 см + 4 см + 5 см = 14 см
Ломаная, концы которой совмещаются, называется замкнутой.
Многоугольником называется фигура, ограниченная замкнутой ломаной линией, звенья которой не пересекаются.
Отрезки (звенья) ломаной линии называют сторонами многоугольника.
Общие точки двух отрезков (сторон) многоугольника называют его вершинами.
Каждая пара сторон многоугольника, сходящиеся в одной точке, образуют углы многоугольника.
Количество сторон и количество углов в многоугольнике совпадают.
Вершины, стороны и углы многоугольника обозначаются аналогично ломаной линии.
Многоугольник принято обозначать и называть по его вершинам, начиная с любой вершины и называя их последовательно, в любом порядке.
На рисунке изображен многоугольник АBCDEF.
Вершины многоугольника АBCDEF: А, B, C, D, Е, F.
Стороны многоугольника АBCDEF: AB, BC, CD, DE, EF, FA.
Любые многоугольники можно сравнить: два многоугольника называются равными, если они совпадают при наложении.
Зная длину каждой стороны многоугольника, можно найти периметр этого многоугольника.
Периметр многоугольника принято обозначать заглавной латинской буквой Р
Найдем периметр многоугольника АBCDEF (изображенного на рисунке):
РАВСDEF = AB+ BC+ CD+ DE+ EF+ FA = 2 см + 3 см + 2 см + 2 см + 3 см + 2 см = 14 см.
Существует огромное множество различных видов многоугольников.
Обычно многоугольники различают по числу сторон и углов.
Многоугольник с наименьшим числом вершин, сторон и углов называют треугольником.
Треугольник часто обозначают символом «Δ» и тремя заглавными латинскими буквами, которые обозначают его вершины.
На рисунке изображен треугольник АBC (Δ АBC).
Отрезки AB, BC, АC— стороны треугольника АBC.
Периметр треугольника- это сумма длин трех его сторон.
Найдем периметр треугольника АBC (изображенного на рисунке):
РАВС = AB+ BC+ АС = 4 см + 6 см + 3 см = 13 см.
Пройти тест и получить оценку можно после входа или регистрации
ВОПРОСЫ
1. Сколько существует отрезков, концами которых являются две данные точки?
2. Как обозначают отрезок?
3. Какие вы знаете единицы длины?
Нам известны такие единицы длины: миллиметр, сантиметр, дециметр, метр, километр.
4. Объясните, что означает измерить длину отрезка.
5. Каким свойством обладает длина отрезка?
6. Какие отрезки называют равными?
7. Какие длины имеют равные отрезки?
8. Какой из двух неравных отрезков считают большим?
9. Что называют расстоянием между точками А и В?
10. Объясните, какую геометрическую фигуру называют ломаной.
11. Что называют длиной ломаной?
12. Какую ломаную называют замкнутой?
РЕШАЕМ УСТНО
1. Какое число больше числа 46 на 9? Какое число меньше числа 72 на 15? Какое число больше числа 21 в 7 раз? Какое число меньше числа 65 в 13 раз?
2. Назовите все двузначные числа, сумма цифр которых равна 6.
3. Назовите все двузначные числа, разность цифр которых равна 7.
4. Назовите три последовательных натуральных числа, наименьшим из которых является наибольшее четырехзначное число.
5. Назовите три последовательных натуральных числа, наибольшим из которых является наименьшее четырехзначное число.
6. Выразите в сантиметрах:
1) 7 дм 4 см = 74 см
2) 4 м 1 см = 401 см
3) 2 м 6 дм = 260 см
4) 1 м 2 дм 5 см = 125 см
7. Выразите в дециметрах и сантиметрах:
1) 72 см = 7 дм 2 см
2) 146 см = 14 дм 6 см
3) 450 мм = 4 дм 5 см
4) 8 м 40 мм = 80 дм 4 см
УПРАЖНЕНИЯ
44. Запишите все отрезки, изображенные на рисунке 15.
a) AB, BC, AC, BK
б) OP, OR, OT, PR, PT, RT
в) AE, EC, CD, AC, ED, AD
г) MN, NE, ME, EP, PQ, EQ, MQ, NP
45. Запишите все отрезки, изображенные на рисунке 16.
а) AO, OC, AC, BO, OD, BD, AD
б) MK, KN, NP, MN, KP, MP, FK, KE, FE, EN, NS, ES
46. Отметьте в тетради точки A, B, C, D и соедините их попарно отрезками. Сколько отрезков образовлось? Сколько образовалось отрезков с концом в точке А?
47. Начертите отрезки MN и AC так, чтобы MN=6 см 3 мм, AC = 5 см 3 мм.
48. Начертите отрезки EF и BK так, что EF = 9 см 2 мм, BK = 7 см 6 мм.
49. Начертите отрезок АВ, длина которого равна 8 см 9 мм. Отметьте на нём точку С так, чтобы СВ = 3 см 4 мм. Какова длина отрезка АС?
50. Начертите отрезок TP, длина которого равна 7 см 8 мм. Отметьте на нём точку Е так, чтобы ТЕ = 2 см 6 мм. Какова длина отрезка ЕР?
51. Сравните на глаз отрезки АВ и CD (рис. 17). Проверьте свой вывод измерением.
52. Назовите все ломаные, изображённые на рисунке 11. Какая из них имеет наибольшее количество звеньев?
53. Назовите звенья ломаной, изображённой на рисунке 18, и измерьте их длины (в миллиметрах). Вычислите длину ломаной.
54. Запишите звенья ломаной, изображённой на рисунке 19, и измерьте их длины (в миллиметрах). Вычислите длину ломаной.
55. Отметьте в узле клеток тетради точку А; точку В разместите на 4 клетки левее и на 5 клеток выше точки А; точку С — на 3 клетки правее и на 1 клетку выше точки В; точку D — на 3 клетки правее и на 3 клетки ниже точки С; точку Е — на 1 клетку правее и на 2 клетки ниже точки D. Соедините последовательно отрезками точки А, В, С, D и Е. Какая фигура образовалась? Запишите её название и укажите количество звеньев.
56. Вычислите длину ломаной ABCDE, если АВ = 8 см, ВС = 14 см, CD = 23 см, DE = 10 см.
57. Вычислите длину ломаной MNKPEE, если MN = 42 мм, NK = 38 мм, КР = 19 мм, РЕ = 12 мм, ЕF = 29 мм.
58. Начертите в тетради ломаную, изображённую на рисунке 20. Измерьте длины звеньев (в миллиметрах) и найдите длину ломаной.
59. Известно, что отрезок SK в 3 раза больше отрезка RS (рис. 21). Найдите длину отрезка RK, если RS = 34 см.
60. Известно, что отрезок DВ в 5 раз меньше отрезка AD (рис. 22). Найдите длину отрезка АВ, если АD = 135 см.
61. Известно, что AC = 32 см, ВС = 9 см, CD = 12 см (рис. 23). Найдите длины отрезков АВ и BD.
62. Известно, что MF= 43 см, МЕ = 26 см, КЕ = 18 см (рис. 24). Найдите длины отрезков МК и EF.
63. Даны две точки А и В. Сколько можно провести отрезков, соединяющих эти точки? Сколько можно провести ломаных, соединяющих эти точки?
64. Начертите отрезок МК и отметьте на нём точки А и С. Запишите все образовавшиеся отрезки.
65. Длина отрезка АВ равна 28 см. Точки М и К принадлежат этому отрезку, причём точка К лежит между точками М и В, AM =12 см, ВК = 9 см. Найдите длину отрезка МК.
66. Точка С принадлежит отрезку АВ, длина отрезка АС равна 15 см, а отрезок АВ на 5 см больше отрезка АС. Чему равна длина отрезка ВС? Есть ли в условии задачи лишние данные?
67. Отрезки МТ и FK равны (рис. 25). Сравните отрезки MF и ТК.
68. Постройте ломаную ACDM так, чтобы АС = 15 мм, CD = 24 мм, DM = 32 мм. Вычислите длину ломаной.
69. Постройте ломаную CEFK так, чтобы звено СЕ было равно 8 мм, звено EF было на 14 мм больше звена СЕ, а звено FK — на 7 мм меньше звена EF. Вычислите длину ломаной.
70. Вычислите длину ломаной, изображённой на рисунке 26.
71. Известно, что АС = 8 см, BD = 6 см, ВС = 2 см (рис. 27). Найдите длину отрезка AD.
72. Известно, что MF = 30 см, ME = 18 см, KF = 22 см (рис. 28). Найдите длину отрезка КЕ.
73. Известно, что КР = РЕ = EF = FT = 2 см (рис. 29). Какие ещё равные отрезки есть на этом рисунке? Найдите их длины.
74. На первом отрезке отметили семь точек так, что расстояние между любыми соседними точками равно 3 см, а на втором — десять точек так, что расстояние между любыми соседними точками равно 2 см. Расстояние между какими крайними точками больше: лежащими на первом отрезке или лежащими на втором отрезке?
75. Известно, что АЕ = 12 см, AQ = QB, ВМ = МС, СК = KD, DR = RE, МК = 4 см (рис. 30). Найдите длину отрезка QR.
76. Какое наименьшее количество точек надо отметить на отрезках, изображённых на рисунке 31, чтобы на каждом из них было две отмеченные точки, не считая концов отрезков?
77. У Миши есть линейка, на которой отмечены только 0 см, 5 см и 13 см (рис. 32). Как, пользуясь этой линейкой, он может построить отрезок длиной: 1) 3 см; 2) 2 см; 3) 1 см?
УПРАЖНЕНИЯ ДЛЯ ПОВТОРЕНИЯ
78. Вычислите:
79. Выполните действия:
80. Детскому саду подарили четыре ящика конфет по 5 кг в каждом и шесть ящиков печенья по 3 кг в каждом. На сколько килограммов больше подарили конфет, чем печенья?
81. Медведица Настасия Петровна заготовила на зиму семь бочонков мёда по 12 кг в каждом и 8 бочонков мёда по 10 кг в каждом. Сколько всего килограммов мёда заготовила Настасия Петровна?
82. В магазин привезли 240 кг бананов и 156 кг апельсинов. Треть привезённых фруктов продали в первый день, а остальные — во второй день. Сколько килограммов фруктов продали во второй день?
83. Кот Матроскин вырастил в своём саду 246 кг яблок и 354 кг груш. Шестую часть всех фруктов он отдал своим друзьям из детского сада, пятую часть всех фруктов — друзьям из школы, а остальное — в больницу. Сколько килограммов фруктов Матроскин отдал в больницу?
84. Укажите наименьшее натуральное число, сумма цифр которого равна 101.