Что называют диагональю параллелограмма
Параллелограмм. Свойства и признаки параллелограмма
Определение параллелограмма
Параллелограмм – четырехугольник, у которого противоположные стороны попарно параллельны.
Свойства параллелограмма
1. Противоположные стороны параллелограмма попарно равны
2. Противоположные углы параллелограмма попарно равны
3. Сумма смежных (соседних) углов параллелограмма равна 180 градусов
4. Сумма всех углов равна 360°
5. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам
6. Точка пересечения диагоналей является центром симметрии параллелограмма
7. Диагонали параллелограмма и стороны
связаны следующим соотношением:
8. Биссектриса отсекает от параллелограмма равнобедренный треугольник
Признаки параллелограмма
Четырехугольник является параллелограммом, если выполняется хотя бы одно из следующих условий:
1. Противоположные стороны попарно равны:
2. Противоположные углы попарно равны:
3. Диагонали пересекаются и в точке пересечения делятся пополам
4. Противоположные стороны равны и параллельны:
5.
Небольшой видеоролик о свойствах параллелограмма (в том числе ромба, прямоугольника, квадрата) и о том, как эти свойства применяются в задачах:
Формулы площади параллелограмма смотрите здесь.
Хорошую подборку задач на нахождение углов и длин в параллелограмме смотрите здесь.
Параллелограмм: свойства и признаки
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Определение параллелограмма
Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны. Как выглядит параллелограмм:
Частные случаи параллелограмма: ромб, прямоугольник, квадрат.
Диагонали — отрезки, которые соединяют противоположные вершины.
Свойства диагоналей параллелограмма:
Биссектриса параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.
Свойства биссектрисы параллелограмма:
Как найти площадь параллелограмма:
Периметр параллелограмма — сумма длины и ширины, умноженная на два.
P = 2 × (a + b), где a — ширина, b — высота.
У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!
Свойства параллелограмма
Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.
Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:
А сейчас докажем теорему, которая основана на первых двух свойствах.
Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.
В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.
Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:
Теорема доказана. Наше предположение верно.
Признаки параллелограмма
Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.
Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Докажем 1 признак параллелограмма:
Шаг 1. Пусть в четырехугольнике ABCD:
Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.
Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.
Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:
Шаг 3. Из равенства треугольников также следует:
Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.
Вот так быстро мы доказали первый признак.
Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Докажем 2 признак параллелограмма:
Шаг 1. Пусть в четырехугольнике ABCD:
Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:
Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.
Шаг 3. Из равенства треугольников следует:
А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.
Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.
Доказали второй признак.
Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Докажем 3 признак параллелограмма:
Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:
Шаг 2. Из равенства треугольников следует, что CD = AB.
Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).
Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.
Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.
Параллелограмм. Формулы, признаки и свойства параллелограмма
Рис.1 | Рис.2 |
Признаки параллелограмма
AB||CD, AB = CD (или BC||AD, BC = AD)
∠ABC + ∠BCD = ∠BCD + ∠CDA = ∠CDA + ∠DAB = ∠DAB + ∠DAB = 180°
AC 2 + BD 2 = AB 2 + BC 2 + CD 2 + AD 2
Основные свойства параллелограмма
∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°
∠ABC + ∠BCD = ∠BCD + ∠CDA = ∠CDA + ∠DAB = ∠DAB + ∠DAB = 180°
8. Диагонали параллелограмма пересекаются и точкой пересечения делят друг друга пополам:
AO = CO = | d 1 |
2 | |
BO = DO = | d 2 |
2 |
AC 2 + BD 2 = 2AB 2 + 2BC 2
Стороны параллелограмма
Формулы определения длин сторон параллелограмма:
1. Формула сторон параллелограмма через диагонали и угол между ними:
2. Формула сторон параллелограмма через диагонали и другую сторону:
3. Формула сторон параллелограмма через высоту и синус угла:
a = | h b |
sin α |
b = | h a |
sin α |
4. Формула сторон параллелограмма через площадь и высоту:
a = | S |
ha |
b = | S |
hb |
Диагонали параллелограмма
Формулы определения длины диагонали параллелограмма:
d 2 = √ a 2 + b 2 + 2 ab·cosβ
d 1 = √ a 2 + b 2 + 2 ab·cosα
4. Формула диагонали параллелограмма через площадь, известную диагональ и угол между диагоналями:
d 1 = | 2S | = | 2S |
d 2· sinγ | d 2· sinδ |
d 2 = | 2S | = | 2S |
d 1· sinγ | d 1· sinδ |
Периметр параллелограмма
Формулы определения длины периметра параллелограмма:
P = 2 a + 2 b = 2( a + b )
3. Формула периметра параллелограмма через одну сторону, высоту и синус угла:
P = | 2( b + | h b | ) |
sin α |
P = | 2( a + | h a | ) |
sin α |
Площадь параллелограмма
Формулы определения площади параллелограмма:
3. Формула площади параллелограмма через две диагонали и синус угла между ними:
S = | 1 | d 1 d 2 sin γ |
2 |
S = | 1 | d 1 d 2 sin δ |
2 |
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Параллелограммы
Свойства и признаки параллелограмма |
Свойства и признаки прямоугольника |
Свойства и признаки ромба |
Свойства и признаки квадрата |
Свойства и признаки параллелограмма
Определение: Параллелограммом называют четырёхугольник, у которого противолежащие стороны параллельны
Определение: Диагональю параллелограмма называют отрезок, соединяющий противоположные вершины
Определение: Высотой параллелограмма называют перпендикуляр, опущенный из любой точки на стороне параллелограмма на противоположную сторону параллелограмма или ее продолжение
Свойство: Если четырёхугольник является параллелограммом, то его противолежащие стороны равны.
Признак: Если у четырёхугольника противолежащие стороны равны, то он является параллелограммом.
Признак: Если у четырёхугольника две противолежащие стороны равны и параллельны, то он является параллелограммом.
Свойство: Если четырёхугольник является параллелограммом, то его диагонали точкой пересечения делятся пополам.
Признак: Если у четырёхугольника диагонали точкой пересечения делятся пополам, то он является параллелограммом.
Свойство: Если четырёхугольник является параллелограммом, то его противолежащие углы равны.
Признак: Если у четырёхугольника противолежащие углы равны, то четырёхугольник является параллелограммом.
Свойство: Если четырёхугольник является параллелограммом, то каждая диагональ делит его на два равных треугольника.
Признак: Если каждая диагональ четырёхугольника делит его на два равных треугольника, то четырёхугольник является параллелограммом.
Свойство: Если четырёхугольник является параллелограммом, то диагонали делит его на четыре треугольника равной площади (равновеликих треугольника)
Признак: Если диагонали четырёхугольника делят его на четыре треугольника равной площади (равновеликих треугольника), то четырёхугольник является параллелограммом.
Свойства и признаки прямоугольника
Тип утверждения | Фигура | Рисунок | Формулировка |
Определение | Прямоугольник | Прямоугольником называют параллелограмм, у которого все углы прямые | |
Свойство | Равенство диагоналей | Если параллелограмм является прямоугольником, то его диагонали равны | |
Признак | Если у параллелограмма диагонали равны, то он является прямоугольником |
Определение: прямоугольник | |
Прямоугольником называют параллелограмм, у которого все углы прямые | |
Свойство: равенство диагоналей | |
Если параллелограмм является прямоугольником, то его диагонали равны | |
Признак: равенство диагоналей | |
Если у параллелограмма диагонали равны, то он является прямоугольником |
Определение: Прямоугольником называют параллелограмм, у которого все углы прямые.
Свойство: Если параллелограмм является прямоугольником, то его диагонали равны.
Признак: Если у параллелограмма диагонали равны, то он является прямоугольником.
Свойства и признаки ромба
Тип утверждения | Фигура | Рисунок | Формулировка |
Определение | Ромб | Ромбом называют параллелограмм, у которого все стороны равны | |
Свойство | Биссектрисы углов диагонали | Если параллелограмм является ромбом, то его диагонали является биссектрисами углов | |
Признак | Если у параллелограмма диагонали являются биссектрисами углов, то параллелограмм является ромбом | ||
Свойство | Перпендикулярность диагоналей | Если параллелограмм является ромбом, то его диагонали перпендикулярны | |
Признак | Если у параллелограмма диагонали перпендикулярны, то он является ромбом |
Определение: ромб | |
Ромбом называют параллелограмм, у которого все стороны равны | |
Свойство: биссектрисы углов и диагонали | |
Если параллелограмм является ромбом, то его диагонали являются биссектрисами углов | |
Признак: биссектрисы углов и диагонали | |
Если у параллелограмма диагонали являются биссектрисами углов, то параллелограмм является ромбом | |
Свойство: перпендикулярность диагоналей | |
Если параллелограмм является ромбом, то его диагонали перпендикулярны | |
Признак: перпендикулярность диагоналей | |
Если у параллелограмма диагонали перпендикулярны, то он является ромбом |
Определение: Ромбом называют параллелограмм, у которого все стороны равны
Признак: Если у параллелограмма диагонали являются биссектрисами углов, то параллелограмм является ромбом
Свойство: Если параллелограмм является ромбом, то его диагонали перпендикулярны
Признак: Если у параллелограмма диагонали перпендикулярны, то он является ромбом
Свойства и признаки квадрата
Тип утверждения | Фигура | Рисунок | Формулировка |
Определение | Квадрат | Квадратом называют параллелограмм, у которого все стороны равны и все углы равны | |
Свойство | Перпендикулярность и равенство диагоналей | Если параллелограмм является квадратом, то его диагонали перпендикулярны и равны | |
Признак | Если у параллелограмма диагонали перпендикулярны и равны, то он является квадратом | ||
Свойство | Перпендикулярность диагоналей | Если прямоугольник является квадратом, то его диагонали перпендикулярны | |
Признак | Если у прямоугольника диагонали перпендикулярны, то он является квадратом | ||
Свойство | Равенство диагоналей | Если ромб является квадратом, то его диагонали равны | |
Признак | Если у ромба диагонали равны, то он является квадратом |
Определение: квадрат | |
Квадратом называют параллелограмм, у которого все стороны равны и все углы равны | |
Свойство: перпендикулярность и равенство диагоналей | |
Если параллелограмм является квадратом, то его диагонали перпендикулярны и равны | |
Признак: перпендикулярность и равенство диагоналей | |
Если у параллелограмма диагонали перпендикулярны и равны, то он является квадратом | |
Свойство: перпендикулярность диагоналей | |
Если прямоугольник является квадратом, то его диагонали перпендикулярны | |
Признак: перпендикулярность диагоналей | |
Если у прямоугольника диагонали перпендикулярны, то он является квадратом | |
Свойство: равенство диагоналей | |
Если ромб является квадратом, то его диагонали равны | |
Признак: равенство диагоналей | |
Если у ромба диагонали равны, то он является квадратом |
Определение: Квадратом называют параллелограмм, у которого все стороны равны и все углы равны
Свойство: Если параллелограмм является квадратом, то его диагонали перпендикулярны и равны
Признак: Если у параллелограмма диагонали перпендикулярны и равны, то он является квадратом
Свойство: Если прямоугольник является квадратом, то его диагонали перпендикулярны
Признак: Если у прямоугольника диагонали перпендикулярны, то он является квадратом
Свойство: Если ромб является квадратом, то его диагонали равны
Признак: Если у ромба диагонали равны, то он является квадратом