Что называется значение выражения с переменными

Значение числового, буквенного выражения и выражения с переменными.

При изучении темы числовые, буквенные выражения и выражения с переменными необходимо уделить внимание понятию значение выражения. В этой статье мы ответим на вопрос, что такое значение числового выражения, и что называют значением буквенного выражения и выражения с переменными при выбранных значениях переменных. Для разъяснения этих определений приведем примеры.

Навигация по странице.

Что называют значением числового выражения?

Знакомство с числовыми выражениями начинается чуть ли не с первых уроков математики в школе. Практически сразу вводится и понятие «значение числового выражения». Его относят к выражениям, составленным из чисел, соединенных знаками арифметических действий (+, −, ·, :). Дадим соответствующее определение.

Значение числового выражения – это число, которое получается после выполнения всех действий в исходном числовом выражении.

Часто в словосочетании «значение числового выражения» слово «числового» опускают, и говорят просто «значение выражения», так как все равно понятно, о значении какого выражения идет речь.

Часто на практике интерес представляет не столько числовое выражение, как его значение. То есть, встает задача, заключающаяся в определении значения данного выражения. При этом обычно говорят, что нужно найти значение выражения. В указанной статье подробно разобран процесс нахождения значения числовых выражений различного вида, и рассмотрена масса примеров с детальными описаниями решений.

Значение буквенного выражения и выражения с переменными

Помимо числовых выражений изучают буквенные выражения, то есть выражения, в записи которых вместе с числами присутствует одна или несколько букв. Буквы в буквенном выражении могут обозначать различные числа, и если буквы заменить этими числами, то буквенное выражение станет числовым.

Числа, которыми заменяют буквы в буквенном выражении, называют значениями этих букв, а значение полученного при этом числового выражения называют значением буквенного выражения при данных значениях букв.

Итак, для буквенных выражений говорят не просто о значении буквенного выражения, а о значении буквенного выражения при данных (заданных, указанных и т.п.) значениях букв.

В старших классах при изучении алгебры буквам в буквенных выражениях позволяют принимать различные значения, такие буквы называют переменными, а буквенные выражения – выражениями с переменными. Для этих выражений вводится понятие значения выражения с переменными при выбранных значениях переменных. Разберемся, что это такое.

Значением выражения с переменными при выбранных значениях переменных называется значение числового выражения, которое получается после подстановки выбранных значений переменных в исходное выражение.

Остается лишь добавить, что существуют выражения с переменными, значения которых не зависят от значений входящих в них переменных. Например, значение выражения с переменной x вида 2+x−x не зависит от значения этой переменной, оно равно 2 при любом выбранном значении переменной x из области ее допустимых значений, которая в данном случае является множеством всех действительных чисел.

Источник

Значение числового, буквенного выражения и выражения с переменными

В процессе разбора тем о числовых, буквенных выражениях и выражениях с переменными следует обратить внимание на понятие значение выражения. Ниже дадим определение этому термину, рассмотрим примеры.

Что такое значение числового выражения

Мы знакомимся с числовыми выражениями с самого начала школьного обучения. Да и почти сразу начинает использоваться понятие «значение числового выражения». Так обозначают выражения, составляющие которого – числа, соединяемые знаками арифметических действий: плюс, минус, умножить, разделить.

Значение числового выражения – это конечное число, получаемое в результате выполнения заданных действий в исходном числовом выражении.

Зачастую в словосочетании «значение числового выражения» слово «числовое» не употребляют, поскольку в любом случае понятно, значение какого выражения рассматривается.

В основном интерес вызывает не само числовое выражение, а его значение. Практически всегда существует задача по нахождению значения заданного выражения, которая так и обозначается: «найти значение выражения». В соответствующей статье можно детально изучить сам процесс нахождения значения числовых выражения разного рода с примерами.

Значение буквенного выражения и выражения с переменными

Кроме числовых, интерес представляют и буквенные выражения – те выражения, составляющими которого являются, в том числе, одна или несколько букв. Буквы в буквенном выражении обозначают разные числа, и при замене букв на числа получается числовое выражение.

Значения букв – числа, которые заменяют эти буквы в буквенном выражении. Тогда значение буквенного выражения при заданных значениях букв – это значение полученного числового выражения.

Таким образом, речь идет не о значении буквенного выражения, как такового, а о его значении, когда заданы (определены) конкретные значения букв.

В программе алгебры буквы в буквенном выражении могут принимать разнообразные значения, тогда буквы называют переменными, а буквенные выражения – выражениями с переменными. Логично следует введение понятия значения выражений при выбранных значениях переменных.

Значение выражения с переменными при выбранных значениях переменных – это значение числового выражения, полученное при подстановке конкретных выбранных значений переменных в заданное выражение.

Возможен вариант, когда выбранные переменные –различны, а значение исходного выражения при этих переменных одинаково.

Значения переменных возможно задать из областей допустимых значений, которые им соответствуют, поскольку в ином случае, подставив значения, не принадлежащие области допустимых значений, можно получить числовое выражение, не имеющее смысла.

Источник

Числовые, буквенные выражения и выражения с переменными: определения, примеры

В математике принято использовать свои обозначения. Запись условий задач с их помощью приводит к появлению так называемых математических выражений. Можно говорить про числовые, буквенные выражения и математические выражения с переменными. Для удобства и одни, и вторые и третьи называются просто выражениями. В этой статье мы дадим определения и по порядку рассмотрим каждый тип математических выражений.

Числовые выражения

Конечно, числовые выражения содержат не только знаки «плюс» и «минус». Они могут включать деление и умножение, содержать скобки, степени, корни, логарифмы и состоять из нескольких действий.

Учитывая все сказанное, дадим определение. Что такое числовое выражение?

Определение. Числовое выражение

Числовым выражением считается только та комбинация, которая составлена с учетом математических правил.

Поясним данное определение.

Во-первых, числа. Математическое выражение может содержать любые числа. Это значит, что в математическом выражении можно встретить:

деление в выражениях может присутствовать как в виде знака, так и в виде дробной черты.

Скобки в числовых выражениях

Согласно определению, числовые выражения могут содержать степени, корни, логарифмы, тригонометрические и обратные тригонометрическим функции. Приведем пример такого числового выражения:

В качестве примера использования в числовых выражениях специальных знаков, можно привести знак модуля.

Буквенные выражения

После знакомства с числовыми выражениями можно вводить понятие буквенных выражений. Интуитивно понятно, что в них вместо чисел используются буквы. Но обо всем по порядку.

Запишем числовое выражение, но вместо одного числа оставим пустой квадратик.

Определение. Буквенное выражение

Выражение, в котором буквы заменяняют некоторые цифры, называется буквенным выражением. Буквенное выражение должно содержать по крайней мере одну букву.

Приведем пример сложного буквенного выражения.

Выражения с переменными

В рассмотренных выше буквенных выражениях буква обозначала какое-то конкретное числовое значение. Величина, которая может принимать ряд различных значений, называется переменной. Выражение с такой величиной, соответственно, называются выражением с переменной.

Определение. Выражения с переменными

Вообще буквенные выражения и выражения с переменными позволяют посмотреть на задачу вне контекста конкретных чисел, то есть более широко. Они широко используются в математическом анализе для формулировок и доказательств.

Внешний вид буквенного выражения не позволяет узнать, являются входящие в него буквы переменными, или нет. Для этого нужно знать условия конкретной задачи, описываемой выражением. Вне контекста ничто не мешает считать входящие в выражение буквы переменными. Таким образом, разница между понятиями «буквенное выражение» и «выражение с переменными» нивелируется.

Источник

Числовые, буквенные выражения и выражения с переменными: определения, примеры.

Запись условий задач с помощью принятых в математике обозначений приводит к появлению так называемых математических выражений, которые называют просто выражениями. В этой статье мы подробно поговорим про числовые, буквенные выражения и выражения с переменными: дадим определения и приведем примеры выражений каждого вида.

Навигация по странице.

Числовые выражения – что это?

Можно сделать вывод, что на этом этапе изучения математики числовыми выражениями называют имеющие математический смысл записи, составленные из чисел, скобок и знаков сложения и вычитания.

А в старших классах разнообразие записей числовых выражений разрастается как снежный ком, катящийся с горы. В них появляются обыкновенные и десятичные дроби, смешанные числа и отрицательные числа, степени, корни, логарифмы, синусы, косинусы и так далее.

Обобщим всю информацию в определение числового выражения:

Разъясним все составные части озвученного определения.

В числовых выражениях могут участвовать абсолютно любые числа: от натуральных до действительных, и даже комплексных. То есть, в числовых выражениях можно встретить

Что касается скобок, то имеют место как числовые выражения, в которых есть скобки, так и выражения без них. Если в числовом выражении есть скобки, то они в основном

В качестве специальных математических символов и обозначений, которые можно встретить в числовых выражениях, приведем знак модуля. Для примера покажем числовое выражение с модулем Что называется значение выражения с переменными.

Что такое буквенные выражения?

Итак, если допустить в числовом выражении присутствие букв, которыми обозначены некоторые числа, то получится так называемое буквенное выражение. Дадим соответствующее определение.

Выражение, содержащее буквы, которыми обозначены некоторые числа, называется буквенным выражением.

Из данного определения понятно, что принципиально буквенное выражение отличается от числового выражения тем, что может содержать буквы. Обычно в буквенных выражениях используются маленькие буквы латинского алфавита ( a, b, c, … ), а при обозначении углов – маленькие буквы греческого алфавита ( α, β, γ, … ).

Итак, буквенные выражения могут быть составлены из чисел, букв и содержать все математические символы, которые могут встречаться в числовых выражениях, такие как скобки, знаки корней, логарифмы, тригонометрические и другие функции и т.п. Отдельно подчеркнем, что буквенное выражение содержит по крайней мере одну букву. Но может содержать и несколько одинаковых или различных букв.

Выражения с переменными

Если в буквенном выражении буква обозначает величину, которая принимает не какое-то одно конкретное значение, а может принимать различные значения, то эту букву называют переменной и выражение называют выражением с переменной.

Выражение с переменными – это буквенное выражение, в котором буквы (все или некоторые) обозначают величины, принимающие различные значения.

Вообще, переход от понятия буквенного выражения к выражению с переменными происходит в 7 классе, когда начинают изучать алгебру. До этого момента буквенные выражения моделировали какие-то конкретные задачи. В алгебре же начинают смотреть на выражение более общо, без привязки к конкретной задаче, с пониманием того, что данное выражение подходит под огромное число задач.

В заключение этого пункта обратим внимание еще на один момент: по внешнему виду буквенного выражения невозможно узнать, являются ли входящие в него буквы переменными или нет. Поэтому ничто нам не мешает считать эти буквы переменными. При этом разница между терминами «буквенное выражение» и «выражение с переменными» исчезает.

Источник

Числовые и буквенные выражения

Что называется значение выражения с переменными

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Числовые выражения: что это

Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.

Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения.

Например:

Это простые числовые выражения.

Чтобы получить сложное числовое выражение, нужно к простому выражению присоединить знаком арифметического действия еще одно простое числовое выражение. Вот так:

Это сложные числовые выражения.

Знать, где простое выражение, а где сложное — нужно, но называть оба типа выражений следует просто «числовое выражение».

Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.

Вспомним, какие виды арифметических действий есть.
+ — знак сложения, найти сумму.
— — знак вычитания, найти разность.
* — знак умножения, найти произведение.
: — знак деления, найти частное.

11 — значение числового выражения.
6 * 8 = 48
48 — значение числового выражения.

При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:

Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)

Часто бывает нужно сравнить два числовых выражения.

Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их.

Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2

14 больше 4
14 > 4
6 + 8 > 2 * 2

Буквенные выражения

Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.

В буквенном выражение есть цифры, знаки арифметических действия и буквы.

Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.

Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.

У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:

Пример 1. Найдите значение выражения: 5 + x.

Пример 2. Найдите значение выражения: (4 + a) * (2 + x).

Выражения с переменными

Переменная — это значение буквы в буквенном выражении.

Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.

Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение.

5x — это произведение числа 5 и переменной x
4a — это произведение числа 4 и переменной a

Числа 4 и 5 называют коэффициентами.
Коэффициент показывает, во сколько раз будет увеличена переменная.

Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике.

Задание раз.

Задание два.

Составьте буквенное выражение:

Сумма разности b и 345 и суммы 180 и x.

Ответ: роллы “Калифорния” и “Филадельфия” вместе стоят 1 000 рублей.

Задание пять.
Составьте выражение для решения задачи и найдите его значение.
Маша посмотрела за день 150 видео в ТикТок, а Лена — на 13 видео больше. Сколько всего видео было просмотрено обеими девочками?

150 + (150 + 13)
Выполняем сначала действие в скобках: 150 + 13 = 163.
150 + 163 = 313.

Ответ: Маша и Лена посмотрели всего 313 видео.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *