Что называется взаимно простыми числами

Что такое взаимно простые числа

Содержание статьи

Что называется взаимно простыми числами

Простым в математике называется такое число, которое можно разделить только на единицу и на само себя. 3, 7, 11, 143 и даже 1 111 111 – все это простые числа, причем каждое из них обладает данным свойством в отдельности.

Чтобы говорить о взаимно простых числах, их должно быть не менее двух. Данное понятие характеризует общий признак нескольких чисел.

Определение взаимно простых чисел

Взаимно простыми называются такие числа, которые не имеют общего делителя, не считая единицы – например, 3 и 5. При этом каждое число в отдельности может и не быть простым само по себе.

Например, число 8 к таковым не относится, ведь его можно разделить на 2 и на 4, но 8 и 11 – взаимно простые числа. Определяющим признаком здесь является именно отсутствие общего делителя, а не характеристики отдельных чисел.

Впрочем, два и более простых числа всегда будут взаимно простыми. Если каждое из них делится лишь на единицу и на само себя, то общего делителя у них быть не может.

Для взаимно простых чисел существует особое обозначение в виде горизонтального отрезка и опущенного на него перпендикуляра. Это соотносится со свойством перпендикулярных прямых, у которых нет общего направления, как и у этих числе нет общего делителя.

Попарно взаимно простые числа

Возможно и такое сочетание взаимно простых чисел, из которого можно взять наугад любые два числа, и они обязательно окажутся взаимно простыми. Например, 2, 3 и 5: общего делителя не имеют ни 2 и 3, ни 2 и 5, ни 5 и 3. Такие числа именуют попарно взаимно простые.

Не всегда взаимно простые числа бывают попарно взаимно простыми. Например, числа 15, 20 и 21 – это взаимно простые числа, но назвать их попарно взаимно простыми нельзя, ведь 15 и 20 делятся на 5, а 15 и 21 – на 3.

Применение взаимно простых чисел

В цепной передаче, как правило, количество звеньев цепи и зубьев звездочки выражаются взаимно простыми числами. Благодаря этому каждый из зубьев соприкасается с каждым звеном цепи поочередно, механизм меньше изнашивается.

Существует и еще более интересное свойство взаимно простых чисел. Необходимо начертить прямоугольник, длина и ширина которого выражаются взаимно простыми числами, и провести из угла внутрь прямоугольника луч под углом 45 градусов. В точке соприкосновения луча со стороной прямоугольника нужно начертить другой луч, расположенный под углом 90 градусов к первому – отражение. Делая такие лучи-отражения раз за разом, можно получить геометрический узор, в котором любая часть по структуре подобна целому. С точки зрения математики такой узор является фрактальным.

Источник

Взаимно простые числа – определение, примеры и свойства.

Информация этой статьи покрывает тему «взаимно простые числа». Сначала дано определение двух взаимно простых чисел, а также определение трех и большего количества взаимно простых чисел. После этого приведены примеры взаимно простых чисел, и показано, как доказать, что данные числа являются взаимно простыми. Дальше перечислены и доказаны основные свойства взаимно простых чисел. В заключение упомянуты попарно простые числа, так как они тесно связаны со взаимно простыми числами.

Навигация по странице.

Взаимно простые числа – определение и примеры

Понятие взаимно простых чисел дается как для двух целых чисел, так и для их большего числа. Сначала приведем определение двух взаимно простых чисел. Это определение дается через наибольший общий делитель чисел, так что рекомендуем сначала разобраться с материалом указанной статьи.

Приведем примеры взаимно простых чисел.

Заметим, что два простых числа всегда являются взаимно простыми. Однако, два числа не обязательно должны быть простыми, чтобы быть взаимно простыми. Либо одно из них, либо они оба могут быть составными и при этом являться взаимно простыми. Приведем пример, иллюстрирующий это высказывание.

Часто встречаются задания, в которых требуется доказать, что данные целые числа являются взаимно простыми. Доказательство сводится к вычислению наибольшего общего делителя данных чисел и проверке НОД на его равенство единице. Полезно также перед вычислением НОД заглянуть в таблицу простых чисел: вдруг исходные целые числа являются простыми, а мы знаем, что наибольший общий делитель простых чисел равен единице. Рассмотрим решение примера.

Докажите, что числа 84 и 275 являются взаимно простыми.

Определение взаимно простых чисел можно расширить для трех и большего количества чисел.

Из озвученного определения следует, что если некоторый набор целых чисел имеет положительный общий делитель, отличный от единицы, то данные целые числа не являются взаимно простыми.

Обычно далеко не очевидно, что некоторые числа являются взаимно простыми, и этот факт приходится доказывать. Для выяснения, являются ли данные числа взаимно простыми, приходится находить наибольший общий делитель этих чисел, и на основании определения взаимно простых чисел делать вывод.

Источник

Что называется взаимно простыми числами

Главные понятия

Чтобы доказать, что числа взаимно простые (ВПЧ), учитываются их свойства. Запись считается правдивой, если выполняется одно из следующих условий: значение НОД равно 1, в задачах используются попарно ВПЧ. Чтобы понять слово «делитель», рассматривается конкретный пример: у 24 и 54 этот показатель равен 6. НОД может являться то число, на которое делятся без остатка m и n.

Что называется взаимно простыми числами

Показатель существует, и он определён, если значение m или n отлично от нуля. Понятие записывается различным набором символов. Рекомендуется следовать следующими записями:

НОД (m, n) делится на все общие делители m и n. Если соблюдается условие для а: НОД (a, b)(a, b) и для b: НОД (a, b)(a, b), значит a и b — ВПЧ. С помощью такого свойства легко определяются подходящие пары.

Составные цифры

Два числа относительно друг друга будут взаимно простыми всегда. Аналогичные отношения формируются между составными цифрами. Возможно, что из пары m или n одно — составное, а другое — простое, либо две цифры составные (натуральные числа, у которых есть больше двух делителей). Чтобы подтвердить каноническое утверждение, рассматривается пара из 9 и 88. Её простота доказывается путём вычисления НОД.

Что называется взаимно простыми числами

Разложение 88: ±1, ±2, ±4, ±8±1, ±2, ±4, ±8. НОД (9): ±1, ±3, ±9±1, ±3, ±9. Из двух вариантов выбираются общие цифры, а из списка определяется самая большая. Из полного перечня подходит единица.

На практике часто определяется ВПЧ двух целых цифр. Алгоритм решения задач заключается в поиске НОД, его сравнении с единицей. Чтобы быстро и правильно найти пару, используется таблица, в которой есть числа, кратные одному и сами себе.

Описание нескольких групп признаков делимости (ПД) неизвестной а:

Задачи и доказательства

Числа a1, a2, …, akу, у которых есть положительный НОД, больший 11, не являются между собой взаимно обратными. Пример с последующей проверкой: 99, 17−99, 17 и −27−27 — простые. Любое количество цифр будет ВПЧ по отношению к другим членам совокупности. Но 12, −9, 90012, −9, 900 и −72−72 к этой категории не относятся.

Первое задание

Нужно найти число из 4 цифр, кратное 15. Это не дробь, знаменателя нет, но произведение составляющих равняется 60. Решение: чтобы результат делился на 15 без остатка, он должен делиться на 3 и 5. Из предполагаемого списка вычёркивается нуль, так как произведение бы равнялось 0, что невозможно. Можно прийти к выводу, что последняя цифра результата — 5.

Что называется взаимно простыми числами

Известно, что в ответе должно быть четыре цифры, из которых одна уже известна. Нужно найти оставшиеся три, которые находятся в ряду перед пятёркой, а при их умножении получается 12. Проверка предположения: 60:5=12. Полученный результат легко представить в виде нескольких вариантов со следующими тремя множителями:

По условию задачи, результат должен делиться на 15. Поэтому ответ будет состоять из трёх вариантов: 3225, 2325 и 2235.

Второй пример

Из 181615121 нужно зачеркнуть 3 цифры так, чтобы результат был кратным 12. Множители делителя: 3 и 4. Если их вычеркнуть, заданное число разделится на три и четыре, что объясняется их ПД:

Что называется взаимно простыми числами

Учитывая ПД на 4, можно прийти к выводу, что последние две цифры из заданного числа не делятся на четыре. Поэтому из 181615121 вычёркивается единица.

Чтобы разделить 181615121 на три, необходимо просуммировать все составляющие, разделив на 3. Результат суммы равен 25 (3х8). Так как условие выполняется, вычеркивается последняя единица.

Воспользовавшись признаками делимости на 3 и 4, можно составить следующие уравнения:

Ответ: 181512, 811512 либо 181152.

Третье и четвёртое задания

Пример 3: необходимо определить шестизначное число, для записи которого используются 0 и 6, а также оно делится на 90. Решение: составляется уравнение 90 = 10х9. Результат делится на 9 и 10. В конце находится нуль, а сумма составных цифр делится на девять. Для записи используются три шестёрки, так как 3 х 6=18, а 18 кратно 9. Ответы: 666000, 660600, 606060, 600660.

Что называется взаимно простыми числами

Пример 4: нужно определить четырёхзначное число, которое делится на 45 без остатка. Все составные цифры разные и нечётные. Решение: следует составить уравнение с учётом условия задачи. Так как 45 = 9х5, то результат делится на пять и на девять. Одновременно он должен оканчиваться на 5, так как нуль считается чётным. Первые три цифры: 1, 3, 7, 9. Из списка выбираются те три числа, которые в сумме с пятёркой делятся на 9. К ним относятся: 1, 3, 9 и 5. Ответы: 9135, 3915,1935, 1395, 3195.

В условиях некоторых задач говорится о попарно простых числах (ППЧ). Понятие распространяется на последовательность целых цифр a1, a2, …, aka1, a2, …, ak, где каждая взаимно простая относительно других. Пример последовательности: 14, 9, 1714, 9, 17, и −25−25. Любая пара из списка будет взаимно простой. Последнее условие считается обязательным для ППЧ, но взаимно простые попарны не в каждом случае.

Другое понятие, которое встречается в задачах на рассматриваемую тему — совокупность ПЧ. Такие цифры всегда попарно и взаимно простые. Пример последовательности: 1, 443, 857, 99171, 443, 857, 991. У любой такой последовательности понятия попарности и взаимности совпадают.

Источник

Взаимно простые числа

Что называется взаимно простыми числами

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение взаимно простых чисел

Сначала определимся, что значит простое число.

Главное свойство простых чисел в том, что простое число делится только на единицу и на само себя.

Таких чисел немного, большинство все-таки можно разделить на другие числа. В простых числах самое важное — это деление нацело. Дробные частные и деление с остатком не рассматриваем.

Понятие взаимно простых чисел можно применить для двух целых чисел или для большего количества. Сформулируем, какие числа называются взаимно простыми.

Взаимно простые числа

Два целых числа a и b называются взаимно простыми, если их наибольший общий делитель равен единице — то есть НОД (a, b) = 1.

Проще говоря, взаимно простые числа — это целые числа, у которых нет общих делителей, кроме единицы.

Наибольшим общим делителем двух чисел a и b называется наибольшее число, на которое a и b делятся без остатка. Для записи может использоваться аббревиатура НОД. Для двух чисел можно записать так: НОД (a, b).

Наибольший общий делитель взаимно простых чисел — это единица, что следует из определения взаимно простых чисел.

Приведем примеры взаимно простых чисел.

Заметим, что два простых числа всегда являются взаимно простыми. Однако, два числа не обязательно должны быть простыми, чтобы быть взаимно простыми. Вот такая математика в 5 классе. И еще раз: либо одно из них, либо они оба могут быть составными и при этом являться взаимно простыми. Приведем пример.

Делители 8: ±1, ±2, ±4, ±8.

На математике в 5 и 6 класса часто встречаются задания, в которых нужно доказать, что конкретные целые числа являются взаимно простыми. Из чего обычно состоит такое доказательство:

Перед вычислением НОД можно заглянуть в таблицу простых чисел и проверить, вдруг исходные целые числа можно назвать простыми. Тогда решение будет проще, так как мы знаем, что НОД простых чисел равен единице.

Что называется взаимно простыми числами

Повторим еще раз. Что значит взаимно простые числа? Это целые числа, у которых нет общих делителей, кроме единицы.

Пример 1

Доказать, что числа 84 и 275 являются взаимно простыми.

Сверяемся с таблицей простых чисел. 84 и 275 не являются простыми, поэтому нельзя сразу сказать об их взаимной простоте.

Вычислим НОД. Используем алгоритм Евклида для нахождения НОД:

Доказали, что числа 84 и 275 взаимно простые.

Определение взаимно простых чисел можно расширить для трех и большего количества чисел.

То есть если у некоторого набора целых чисел есть положительный общий делитель, отличный от единицы, то эти целые числа не являются взаимно простыми.

Любая совокупность простых чисел составляет набор взаимно простых чисел, например, 2, 3, 11, 19, 151, 293 и 677 — взаимно простые числа. А четыре числа 12, −9, 900 и −72 не являются взаимно простыми, так как у них есть положительный общий делитель 3. Числа 17, 85 и 187 тоже не взаимно простые, потому что каждое из них можно разделить на 17.

Как определить взаимно простые числа:

Пример 2

Являются ли числа 331, 463 и 733 взаимно простыми?

Заглянем в таблицу простых чисел. Видим, что 331, 463 и 733 — простые. Значит, у них есть единственный положительный общий делитель — единица. Поэтому, 331, 463 и 733 есть взаимно простые числа.

Пример 3

Доказать, что числа −14, 105, −2 107 и −91 не являются взаимно простыми.

Найдем НОД заданных чисел и убедимся, что он не равен единице.

Делители целых отрицательных чисел совпадают с делителями соответствующих противоположных чисел. Поэтому НОД (−14, 105, 2 107, −91) = НОД (14, 105, 2 107, 91). Посчитаем:

НОД (14, 105, 2 107, 91) = 7.

Мы получили, что наибольший общий делитель исходных чисел равен семи, поэтому эти числа не являются взаимно простыми. Доказали.

Свойства взаимно простых чисел

У взаимно простых чисел есть определенные свойства. Рассмотрим основные свойства взаимно простых чисел.

Свойство 1

Числа, которые получились при делении целых чисел a и b на их наибольший общий делитель, называются взаимно простыми. То есть, a : НОД (a, b) и b : НОД (a, b) — взаимно простые.

Это свойство взаимно простых чисел помогает находить пары взаимно простых чисел. Для этого достаточно взять два любых целых числа и разделить их на наибольший общий делитель. В результате получим взаимно простые числа.

Свойство 2

Докажем эту необходимость:

Пусть числа a и b взаимно простые. Тогда по определению взаимно простых чисел НОД (a, b) = 1. А из свойств НОД мы знаем, что для целых чисел a и b верно соотношение Безу au0 + bv0 = НОД (a, b). Следовательно, au0 + bv0 = 1.

Соотношение Безу — представление НОД целых чисел в виде их линейной комбинации с целыми коэффициентами.

Докажем достаточность:

Свойство 3

Если числа a и b взаимно простые, и произведение ac делится на b — значит c делится на b.

Действительно, так как a и b взаимно простые, то из предыдущего свойства у нас есть равенство au0 + bv0 = 1. Если умножть обе части этого равенства на c, получится acu0 + bcv0 = c.

Первое слагаемое суммы acu0 + bcv0 делится на b, так как ac делится на b по условию, второе слагаемое этой суммы также делится на b, так как один из множителей равен b. Можно сделать вывод, что вся сумма делится на b. А так как сумма acu0 + bcv0 равна c, то и c делится на b.

Свойство 4

Если числа a и b взаимно простые, то НОД (ac, b) = НОД (c, b).

Покажем, во-первых, что НОД (ac, b) делит НОД (c, b), а во-вторых, что НОД (c, b) делит НОД (ac, b), это и будет доказывать равенство НОД (ac, b) = НОД (c, b).

НОД (ac, b) делит и ac и b, а так как НОД (ac, b) делит b, то он также делит и bc. То есть, НОД (ac, b) делит и ac и bc, следовательно, в силу свойств наибольшего общего делителя он делит и НОД (ac, bc), который по свойствам НОД равен c * НОД (a, b) = c. Таким образом, НОД (ac, b) делит и b и c, следовательно, делит и НОД (c, b).

С другой стороны, НОД (c, b) делит и c и b, а так как он делит с, то также делит и ac. Поэтому НОД (c, b) делит и ac и b, следовательно, делит и НОД (ac, b).

Так мы показали, что НОД (ac, b) и НОД (c, b) взаимно делят друг друга, значит, они равны.

Свойство 5

Предыдущее свойство взаимно простых чисел поможет намзаписать ряд равенств вида:

Определение попарно простых чисел

Через взаимно простые числа можно дадим определение попарно простых чисел.

Приведем пример попарно простых чисел.

При этом, взаимно простые числа далеко не всегда могут быть попарно простыми. Подтвердим на примере. 8, 16, 5 и 15 не являются попарно простыми, так как числа 8 и 16 не взаимно простые. Однако, 8, 16, 5 и 15 — взаимно простые. Таким образом, 8, 16, 5 и 15 — взаимно простые, но не попарно простые.

Остановимся на понятии совокупности некоторого количества простых чисел. Эти числа всегда являются и взаимно простыми и попарно простыми. Например, 71, 443, 857, 991 — и попарно простые, и взаимно простые.

Когда речь идет о двух целых числах, то для них понятия «попарно простые» и «взаимно простые» совпадают.

Источник

Взаимно простые числа – какие, примеры, определение, таблица (6 класс, математика)

Взаимно простые числа тема достаточно сложная тема 6 класса математики. Как и простые числа, тема взаимно простых чисел используется для сложения и вычитания дробей. Чтобы не допускать ошибок в этой теме разберемся в вопросе подробнее.

Что называется взаимно простыми числами

Простые числа

Что такое простое число? Простое число делится только на ноль и на само себя. Например, число 13 является простым, так как нацело делится только на 1 и на 13. Секрет в том, что практически каждое число можно разделить на другое число. Но в простых числах важно именно деление нацело, дробные частные и деление с остатком не рассматривается.

Простые числа в знаменателях дробей означают, что для нахождения общего знаменателя нужно перемножить эти числа между собой. Разложить простые числа на множители невозможно. Поэтому НОД двух простых чисел это их произведение.

Числа, которые содержат в себе больше двух множителей, то есть делятся на несколько чисел, называются сложными. Сложные числа состоят из перемноженных простых.

Взаимно простые числа

Взаимно простыми числами называются числа, наибольший общий делитель которых равен единицы. Доказать факт того, что числа являются взаимно простыми можно только с помощью разложения чисел на простые множители. Если у чисел нет общих множителей, кроме 1, то они будут взаимно простыми.

При этом сами по себе взаимно простые числа могут быть сложными. Важен именно НОД двух чисел.

Нужно учитывать, что взаимно простыми могут быть не только два числа, но и 3, 4, 10 – любое множество чисел может быть взаимно простым.

Как определить взаимно простые числа?

Для того чтобы определить взаимно простые числа, можно воспользоваться двумя алгоритмами:

Относительно друг друга два простых числа всегда будут взаимно простыми. А если одно из чисел, делится на другое нацело, то эти числа точно не являются взаимно простыми.

Пример

Определим, являются ли взаимно простыми числа 1729 и 282

Определение начинается с разложения на множители:

Обратите внимание, что для разложения таких чисел придется использовать метод перебора. Согласно таблице простых чисел каждый множитель проверяется, после чего деление продолжается. Подбирать множители нужно от маленьких чисел к большим, то есть от 2 и выше.

Как видно, общих множителей у двух чисел нет. Это значит, что числа можно считать взаимно простыми. Не нужно пугаться, если среди множителей попадаются достаточно большие числа. Среди учеников существует миф, что простые числа редко бывают больше 20, это не так. Просто такие числа проще использовать в задачах, чтобы набить руку. На экзамене или в контрольной сложность числа для разложения может быть абсолютно любой

Что мы узнали?

Мы поговорили о простых числах. Выяснили, что такое взаимно простые числа и обговорили некоторые их свойства. Привели примеры взаимно простых чисел. Обговорили неправильные мнения по поводу простых и взаимно простых чисел.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *