Что называется высказыванием приведите примеры высказываний
Высказывания и предикаты. Кванторы
п.1. Высказывания
Например:
«Число 13 – нечётное» – высказывание, истинное
«2 + 2 = 5» – высказывание, ложное
«Мы живём в XXI веке» – высказывание, истинное
«Который час?» – не высказывание, т.к. вопросительное предложение
«Вася Пупкин – хороший человек» – не высказывание, т.к. неоднозначно. Но, если определить множество людей, которые оцениваются, и правила их оценки так, что предложение приобретёт однозначность, оно станет высказыванием.
Например:
A: натуральное число a делится на 2;
B: натуральное число a чётное.
Заметим, немного забегая наперёд, что в данном случае из А следует В, и из В следует А. Говорят, что эти высказывания эквивалентны: A ⇔ B.
п.2. Предикаты
Например:
P(x): x – объект с четырьмя ногами
При x = слон – предикат становится истинным высказыванием, P(«слон» )=1
При x = муравей – предикат становится ложным высказыванием, т.к. у муравья 6 ног, P(муравей)=0
При x = стол – предикат становится истинным высказыванием, P(«стол» )=1
При x = человек – предикат становится ложным высказыванием, т.к. у человека 2 ноги, P(человек)=0
Например:
P(x):|x| ≥ 0 – выполняется при любом значении x, это тождественный предикат.
\(\mathrm
>\)
Например:
P(x, y): x делится на y – двуместный предикат, который становится истинным высказыванием на парах значений переменных (15;5), (14;7), (16;4) и т.д.
P(a, b):(a + b) 2 = a 2 + 2ab + b 2 – является тождественным двуместным предикатом, т.к. выполняется для любых a и b.
п.3. Кванторы
«для любого…», «для всех…», «любой…»
Единственности и существования
«существует точно одно такое, что…», «существует и единственно…»
Существуют натуральные числа, которые делятся на 13
Существуют треугольники, у которых все углы равны
Например, равносторонний треугольник со стороной 1
Любое натуральное число делится на 5
Например x = 6 на 5 не делится
У любого выпуклого четырехугольника диагонали перпендикулярны
Например, у прямоугольника со сторонами 3 и 4 угол между диагоналями ≈ 74° ≠ 90°
Разность квадратов двух любых выражений равна произведению суммы и разности
Сумма углов любого треугольника равна 180°.
Третий класс задач (теорема) – самый сложный, т.к. требует не просто одного примера, а доказательства в общем случае.
п.4. Примеры
Пример 1. Запишите по два высказывания (A – истинное, B – ложное), относящиеся к
а) физике
A: Плотность равна отношению массы тела к его объему.
B: КПД механизма может быть больше 1.
б) химии
A: Гидроксид натрия – сильное основание.
B: Сульфат натрия – нерастворимая соль.
в) географии
A: На Земле шесть материков.
B: На Земле три океана.
Пример 3. С каким из кванторов предикат x 2 + 4 = 12 станет истинным высказыванием?
Если запишем (∀x) x 2 + 4 = 12 – это ложное высказывание, т.к., например, при x=0 оно не выполняется.
Если запишем (∃x) x 2 + 4 = 12 – это истинное высказывание, т.к., например, при \(\mathrm
Если запишем (∃x!) x 2 + 4 = 12 – это ложное высказывание, т.е. решений у данного уравнения не одно, а два: \(\mathrm
Ответ: квантор существования ∃.
Высказывание (логика)
Высказывательной формой называется логическое высказывание, в котором один из объектов заменён переменной. При подстановке вместо переменной какого-либо значения высказывательная форма превращается в высказывание. Пример: A(x) = «В городе x идёт дождь.», где A — высказывательная форма, x — объект.
Содержание
Виды высказываний
Логические высказывания принято подразделять на два вида: элементарные логические высказывания и составные логические высказывания.
Составное логическое высказывание — это высказывание, образованное из других высказываний с помощью логических связок.
Элементарные логические высказывания — это высказывания не относящиеся к составным.
Примеры: «Петров — врач», «Петров — шахматист» — элементарные логические высказывания. «Петров — врач и шахматист» — составное логическое высказывание, состоящие из двух элементарных высказываний, связанных между собой при помощи связки «и».
Связь с математической логикой
Обычная логика двухзначна, то есть приписывает высказываниям только два возможных значения: истинно оно или ложно.
Пусть — высказывание. Если оно истинно, то пишут , если ложно, то .
Тождественно истинное высказывание обозначают символом 1, тождественно ложное — символом 0.
Основные операции над логическими высказываниями
Отрицание логического высказывания — логическое высказывание, принимающее значение «истинно», если исходное высказывание ложно, и наоборот.
Конъюнкция двух логических высказываний — логическое высказывание, истинное только тогда, когда они одновременно истинны.
Дизъюнкция двух логических высказываний — логическое высказывание, истинное только тогда, когда хотя бы одно из них истинно.
Импликация двух логических высказываний A и B — логическое высказывание, ложное только тогда, когда B ложно, а A истинно.
Равносильность (эквивалентность) двух логических высказываний — логическое высказывание, истинное только тогда, когда они одновременно истинны или ложны.
Кванторное логическое высказывание с квантором всеобщности () — логическое высказывание, истинное только тогда, когда для каждого объекта x из заданной совокупности высказывание A(x) истинно.
Кванторное логическое высказывание с квантором существования () — логическое высказывание, истинное только тогда, когда в заданной совокупности существует объект x, такой, что высказывание A(x) истинно.
См. также
Примечания
Литература
Полезное
Смотреть что такое «Высказывание (логика)» в других словарях:
Высказывание — Высказывание: Высказывание (логика) предложение, которое может быть истинно или ложно. Высказывание (лингвистика) предложение в конкретной речевой ситуации. См. также Суждение … Википедия
ЛОГИКА — (от греч. logos слово, понятие, рассуждение, разум), или Формальная логика, наука о законах и операциях правильного мышления. Согласно основному принципу Л., правильность рассуждения (вывода) определяется только его логической формой, или… … Философская энциклопедия
ЛОГИКА ВЫСКАЗЫВАНИЙ — раздел логики, в котором изучаются истинностные взаимосвязи между высказываниями. В рамках данного раздела высказывания (пропозиции, предложения) рассматриваются только с т.зр. их истинности или ложности, безотносительно к их внутренней субъектно … Философская энциклопедия
логика высказываний — ЛОГИКА ВЫСКАЗЫВАНИЙ, пропозициональная логика раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, простые высказывания при этом выступают как… … Энциклопедия эпистемологии и философии науки
ВЫСКАЗЫВАНИЕ — грамматически правильное повествовательное предложение, взятое вместе с выражаемым им смыслом. В логике употребляется несколько понятий В., существенно различающихся между собой. Прежде всего это понятие дескриптивного, или о п и с а тельного,… … Философская энциклопедия
Логика Бэрроуза — Логика Бэрроуза Абади Нидхэма (англ. Burrows Abadi Needham logic) или BAN логика (англ. BAN logic) это формальная логическая модель для анализа знания и доверия, широко используемая при анализе протоколов… … Википедия
ЛОГИКА ПРЕДИКАТОВ — центральный раздел логики, в котором изучается субъектно предикатная структура высказывании и истинностные взаимосвязи между ними. Л.п. представляет собой содержательное расширение логики высказываний. В рамках данного раздела любое высказывание… … Философская энциклопедия
ЛОГИКА НАУЧНОГО ПОЗНАНИЯ — или Логика науки, применение идей, методов и аппарата логики в анализе научного познания. Развитие логики всегда было тесно связано с практикой теоретического мышления и прежде всего с развитием науки. Конкретные рассуждения дают логике материал … Философская энциклопедия
ЛОГИКА СИМВОЛИЧЕСКАЯ — ЛОГИКА СИМВОЛИЧЕСКАЯ математическая логика. теоретическая логика область логики, в которой логические выводы исследуются посредством логических исчислений на основе строгого символического языка. Термин “символическая логика” был, по видимому … Философская энциклопедия
ЛОГИКА НАУКИ — в спец. смысле дисциплина, применяющая понятия и технич. аппарат совр. формальной логики к анализу систем науч. знания. Термин «Л. н.» часто употребляется также для обозначения законов развития науки (логика науч. развития), правил и… … Философская энциклопедия
Что называется высказыванием приведите примеры высказываний
Простые и сложные высказывания, логические переменные и логические константы, логическое отрицание, логическое умножение, логическое сложение, таблицы истинности для логических операций
Для описания рассуждений и правил выполнения действий с информацией используют специальный язык, принятый в математической логике. В основе рассуждений содержатся специальные предложения, называемые высказываниями. В высказываниях всегда что-либо утверждается или отрицается об объектах, их свойствах и отношениях между объектами. Высказыванием является любое суждение, относительно которого можно сказать, истинно оно или ложно. Высказываниями могут быть только повествовательные предложения. Вопросительные или побудительные предложения высказываниями не являются.
Высказывание — суждение, сформулированное в виде повествовательного предложения, о котором можно сказать, истинно оно или ложно.
Например, вопросительные предложения «В каком году было первое летописное упоминание о Москве?» и «Что является внешней памятью компьютера?» или побудительное предложение «Соблюдайте правила техники безопасности в компьютерном классе» высказываниями не являются. Повествовательные предложения «Первое летописное упоминание о Москве было в 1812 г.», «Оперативное запоминающее устройство является внешней памятью компьютера» и «В компьютерном классе не надо соблюдать правила техники безопасности» являются высказываниями, поскольку это суждения, о каждом из которых можно сказать, что оно ложно. Истинными высказываниями будут суждения «Первое летописное упоминание о Москве было в 1147 г.», «Жесткий магнитный диск является внешней памятью компьютера».
Каждому высказыванию соответствует только одно из двух значений: или «истина», или «ложь», которые являются логическими константами. Истинное значение принято обозначать цифрой 1, а ложное значение — цифрой 0. Высказывания можно обозначать с помощью логических переменных, в качестве которых используются заглавные латинские буквы. Логические переменные могут принимать только одно из двух возможных значений: «истина» или «ложь». Например, высказывание «Информация в компьютере кодируется с помощью двух знаков» можно обозначить логической переменной А, а высказывание «Принтер является устройством хранения информации» можно обозначить логической переменной В. Поскольку первое высказывание соответствует действительности, то А = 1. Такая запись означает, что высказывание А истинно. Так как второе высказывание не соответствует действительности, то В = 0. Такая запись означает, что высказывание в ложно.
Высказывания могут быть простыми и сложными. Высказывание называется простым, если никакая его часть не является высказыванием. До сих пор были приведены примеры простых высказываний, которые обозначались логическими перемены ми. Выстраивая цепочку рассуждений, человек с помощью логических операций объединяет простые высказывания в сложнее’ высказывания. Чтобы узнать значение сложного высказывания нет необходимости вдумываться в его содержание. Достаточно знать значение простых высказываний, составляющих сложное высказывание, и правила выполнения логических операций.
Логическая операция — действие, позволяющее составлять сложное высказывание из простых высказываний.
Все рассуждения человека, а также работа современных технических устройств основываются на типовых действиях с информацией — трех логических операциях: логическом отрицании (инверсии), логическом умножении (конъюнкции) и логическом сложении (дизъюнкции).
Логическое отрицание простого высказывания получают добавлением слов «Неверно, что» в начале простого высказывания.
■ ПРИМЕР 1. Имеется простое высказывание «Крокодилы умеют летать». Результатом логического отрицания будет высказывание «Неверно, что крокодилы умеют летать». Значение исходного высказывания — «ложь», а значение нового — «истина».
■ ПРИМЕР 2. Имеется простое высказывание «Файл должен иметь имя». Результатом логического отрицания будет высказывание «Неверно, что файл должен иметь имя». Значение исходного высказывания — «истина», а значение нового высказывания — «ложь».
Можно заметить, что логическое отрицание высказывания истинно, когда исходное высказывание ложно, и наоборот, логическое отрицание высказывания ложно, когда исходное высказывание истинно.
Логическое отрицание (инверсия) — логическая операция, ставящая в соответствие простому высказыванию новое высказывание, значение которого противоположно значению исходного высказывания.
Обозначим простое высказывание логической переменной А. Тогда логическое отрицание этого высказывания будем обозначать НЕ А. Запишем все возможные значения логической переменной А и соответствующие результаты логического отрицания НЕ А в виде таблицы, которая называется таблицей истинности для логического отрицания (табл. 40).
ТАБЛИЦА ИСТИННОСТИ ДЛЯ ЛОГИЧЕСКОГО ОТРИЦАНИЯ
Если/1 = 0, то НЕ А = 1 (см. пример 1).
Если А = 1, то НЕ А = 0 (см. пример 2)
Можно заметить, что в таблице истинности для логического отрицания ноль меняется на единицу, а единица меняется на ноль.
Логическое умножение двух простых высказываний получают объединением этих высказываний с помощью союза и. Разберем на примерах 3—6, что будет являться результатом логического умножения.
■ ПРИМЕР 3. Имеются два простых высказывания. Одно высказывание — «Карлсон живет в подвале». Другое высказывание — «Карлсон лечится мороженым».
Результатом логического умножения этих простых высказываний будет сложное высказывание «Карлсон живет в подвале, и Карлсон лечится мороженым». Можно сформулировать новое высказывание более кратко: «Карлсон живет в подвале и лечится мороженым». Оба исходных высказывания ложны. Значение нового сложного высказывания также «ложь».
■ ПРИМЕР 4. Имеются два простых высказывания. Первое высказывание — «Карлсон живет в подвале». Второе высказывание — «Карлсон лечится вареньем».
Результатом логического умножения этих простых высказываний будет сложное высказывание «Карлсон живет в подвале и лечится вареньем». Первое исходное высказывание ложно, а второе истинно. Значение нового сложного высказывания — «ложь».
■ ПРИМЕР 5. Имеются два простых высказывания. Первое высказывание — «Карлсон живет на крыше». Второе высказывание — «Карлсон лечится мороженым».
Результатом логического умножения этих простых высказываний будет сложное высказывание «Карлсон живет на крыше и лечится мороженым». Первое исходное высказывание истин но, а второе ложно. Значение нового сложного высказывания «ложь».
Результатом логического умножения этих простых высказываний будет сложное высказывание «Карлсон живет на крыше и лечится вареньем». Оба исходных высказывания истинны. Зпачение нового сложного высказывания также «истина».
Можно заметить, что логическое умножение двух высказываний истинно только в одном случае — когда оба исходных высказывания истинн ы.
Логическое умножение (конъюнкция) — логическая операция, ставящая в соответствие двум простым высказываниям новое высказывание, значение которого истинно тогда и только тогда, когда оба исходных высказывания истинны.
ТАБЛИЦА ИСТИННОСТИ ДЛЯ ЛОГИЧЕСКОГО УМНОЖЕНИЯ
MT1102: Линейная алгебра (введение в математику)
Определение высказываний
Высказывание — утверждение, относительно которого можно сказать истинно (1, истина, true) оно или ложно (0, ложь, false).
Примеры
Следующие предложения являются высказываниями:
%%A_1%%: «Лондон — столица Австрии».
%%A_2%%: «Число 8 больше числа 3».
%%A_3%%: «Число 8 больше числа 13».
%%A_4%%: «Луна — спутник планеты Земля».
Причем высказывания %%A_1, A_3%% — ложные, а %%A_2, A_4%% — истинные.
Следующие предложения не являются высказываниями:
%%B_1%%: «Какой сегодня день недели?».
%%B_2%%: «%%2 + 3%%».
%%B_3%%: «Число %%x%% больше 3».
Мы не можем сказать о любом из высказываний %%B_1, B_2, B_3%% истинно оно или ложно. Например, в предложении %%B_3%% буква %%x%% — переменная. Если поставить какое либо значение вместо нее, например 8, то получим истинное высказывание.
Операции над высказываниями
Пусть %%A%% и %%B%% — некоторые высказывания.
Конъюнкция
Конъюнкцией высказываний %%A%% и %%B%%
называется новое высказывание, обозначаемое %%A \land B%%, которое является истинным тогда и только тогда, когда высказывания %%A%% и %%B%% истины. Читается как %%A%% и %%B%%.
Рассмотрим конъюнкцию высказывний %%A_1%% и %%A_2%%, которая записывается как %%A_1 \land A_2%% и читается как «Генуя — столица Австрии и число 8 больше числа 3». Это высказывание ложно, так как высказывание %%A_1%% ложно. Другими словами, конъюнкция является ложной тогда и только тогда, когда хотя бы одно из высказываний ложно.
Рассмотрим произвольные высказывания %%A%% и %%B%% и полученное из них высказывание %%A \land B%%. Высказывания %%A, B%% могут быть как ложными, так и истинными. Возможны следующие варианты:
В каждом их этих случаев, вычислив значение конъюнкции высказываний %%A \land B%%, получим следующую таблицу, которая называется таблицей истинности.
%%A%% | %%B%% | %%A \land B%% |
---|---|---|
%%0%% | %%0%% | %%0%% |
%%0%% | %%1%% | %%0%% |
%%1%% | %%0%% | %%0%% |
%%1%% | %%1%% | %%1%% |
Где %%1%% обозначает истинное высказывание, %%0%% — ложное высказывание.
Дизъюнкция
Дизъюнкцией высказываний %%A%% и %%B%%
называется новое высказывание, обозначаемое %%A \lor B%%, которое является ложным тогда и только тогда, когда высказывания %%A%% и %%B%% ложны. Читается как %%A%% или %%B%%.
Рассмотрим дизъюнкцию высказывний %%A_1%% и %%A_2%%, которая записывается как %%A_1 \lor A_2%% и читается как «Москва — столица Австрии или число 8 больше числа 3». Это высказывание истинно, так как высказывание %%A_2%% истинно. Другими словами, дизъюнкция является истинной тогда и только тогда, когда хотя бы одно из высказываний истино.
Таблица истинности для дизъюнкции выглядит следующим образом.
%%A%% | %%B%% | %%A \lor B%% |
---|---|---|
%%0%% | %%0%% | %%0%% |
%%0%% | %%1%% | %%1%% |
%%1%% | %%0%% | %%1%% |
%%1%% | %%1%% | %%1%% |
Импликация
Импликацией высказываний %%A%% и %%B%% называется
новое высказывание, обозначаемое %%A \rightarrow B%%, которое является ложным тогда и только тогда, когда высказывание %%A%% истинно, %%B%% ложно. Читается как: «Если %%A%%, то %%B%%»; «%%A%% влечет %%B%%»; «из %%A%% следует %%B%%»; «%%A%% достаточно для %%B%%»; %%B%% необходимо для %%A%%».
Рассмотрим импликацию высказывний %%A_2%% и %%A_1%%, которая записывается как %%A_2 \rightarrow A_1%% и читается как «Если число %%8%% больше числа %%3%%, то Москва — столица Австрии». Это высказывание ложно, так как высказывание %%A_2%% истинно, а %%A_1%% ложно.
Таблица истинности для импликации выглядит следующим образом.
%%A%% | %%B%% | %%A \rightarrow B%% |
---|---|---|
%%0%% | %%0%% | %%1%% |
%%0%% | %%1%% | %%1%% |
%%1%% | %%0%% | %%0%% |
%%1%% | %%1%% | %%1%% |
Эквиваленция
Эквиваленцией высказываний %%A%% и %%B%%
называется новое высказывание, обозначаемое %%A \leftrightarrow B%%, которое является истинным тогда и только тогда, когда высказывание %%A%% и %%B%% одновременно истинны или ложны. Читается как: «%%A%% равносильно %%B%%»; «%%A%% необходимо и достаточно для %%B%%»; «%%A%% тогда и только тогда, когда %%B%%».
Рассмотрим импликацию высказывний %%A_1%% и %%A_2%%, которая записывается как %%A_1 \leftrightarrow A_2%% и читается как «Москва — столица Австрии тогда и только тогда, когда число %%8%% больше числа %%3%%». Это высказывание ложно, так как высказывание %%A_2%% истинно, а %%A_1%% ложно.
Таблица истинности для эквиваленции выглядит следующим образом.
%%A%% | %%B%% | %%A \leftrightarrow B%% |
---|---|---|
%%0%% | %%0%% | %%1%% |
%%0%% | %%1%% | %%0%% |
%%1%% | %%0%% | %%0%% |
%%1%% | %%1%% | %%1%% |
Также эквиваленцию можно выразить через импликацию и конъюнкцию, тогда
Покажем это, используя таблицы истинности.
%%A%% | %%B%% | %%A \leftrightarrow B%% | %%A \rightarrow B%% | %%B \rightarrow A%% | %%(A \rightarrow B) \land (B \rightarrow A)%% |
---|---|---|---|---|---|
%%0%% | %%0%% | %%1%% | %%1%% | %%1%% | %%1%% |
%%0%% | %%1%% | %%0%% | %%1%% | %%0%% | %%0%% |
%%1%% | %%0%% | %%0%% | %%0%% | %%1%% | %%0%% |
%%1%% | %%1%% | %%1%% | %%1%% | %%1%% | %%1%% |
Как видно из таблицы истинности столбцы %%A \leftrightarrow B%% и %%(A \rightarrow B) \land (B \rightarrow A)%% имеют одни и те же значения при одинаковых наборах значений %%A%% и %%B%%, что говорит о равенстве этих двух формул.
Отрицание
Отрицанием высказывания %%A%%
Рассмотрим отрицание высказывния %%A_1%%, которое записывается как %%\overline
Таблица истинности для отрицания выглядит следующим образом.
Лекция 7. Высказывания и высказывательные формы.
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Лекция 7. Высказывания и высказывательные формы.
Взаимосвязи между объектами и свойствами выражаются с помощью предложений. Предложения могут быть сформулированы при помощи слов и записаны при помощи математических символов:
«У квадрата все стороны равны»; «5 содержанием и логической структурой.
По структу ре различают элементарные и составные предложения.
Элементарные: 1) «20 – четное число»; 2) «х > 8».
Составные: 1)» 20 четное и делится на 5 «; 2) «х 8»,
Составные предложения образуются из элементарных с помощью слов «и», «или», частицы «не». Эти слова называются логическими связками.
Пример : » 20 четное и делится на 5 «
Среди предложений выделяют высказывания и высказывательные формы.
Высказыванием называется повествовательное предложение, о котором можно сказать истинно оно или ложно.
Высказывания обычно обозначают большими латинскими буквами. Если высказывание А истинно, то записывают: А – «и» или присваивают А значение 1, если высказывание А ложно, то пишут А – «л» или А имеет значение 0. «Истина» и «ложь» называются значениями истинности высказываний. Например, предложение «Саратов расположен на берегу реки Волги» является высказыванием, причем истинным высказыванием. Предложение «Число 25 делится на 3» – ложное высказывание. Выражение «25 + 6» высказыванием не является, так как о нем нельзя сказать истинно оно или ложно. Не являются высказываниями предложения, содержащие переменную величину, например: «Число х больше числа 8».
Определение. Высказывательной формой или предикатом называется предложение с одной или несколькими переменными, обращающееся в высказывание, если вместо переменных подставить их значения.
П р и м е р 1. Выясните, какие из следующих предложений являются высказываниями, а какие предикатами: а) 452 х – 6 = 4; в) Сколько стоит эта книга?; г) Число кратно 7?
в) Предложение «Сколько стоит эта книга?» не является высказыванием, так как о вопросительных предложениях бессмысленно ставить вопрос об их истинности или ложности. Данное предложение не является и предикатом.
г) Несмотря на то, что в предложении «Число кратно 7» переменная не содержится в явном виде, ее наличие подразумевается, поэтому данное предложение является предикатом. Оно превращается в высказывание при подстановке в него конкретного числа.
Задания для самостоятельной работы по теме:
1. Укажите среди следующих предложений высказывания:
а) Луна – спутник Земли;
б) все учащиеся любят математику;
в) принеси мне, пожалуйста, книгу;
г) некоторые люди имеют голубые глаза;
д) окружностью называется множество всех точек плоскости, расстояние которых от данной точки плоскости имеет заданную величину;
е) вы были в театре?
2. Верно ли высказывание?
а) Два часа больше семи тысяч секунд;
б) в двух квадратных метрах содержится 200 сантиметров ;
в) пять гирь по 3 кг тяжелее 3 гирь по 5 кг ;
г) число 0 меньше любого натурального числа;
д) семью девять – сорок девять;
е) число 8 удовлетворяет равенству х· х – х = 56.
3. Какие из следующих высказываний верны, а какие неверны:
а) у всех львов есть хвосты;
б) некоторые люди дошли на лыжах до Северного полюса;
в) ни в одном месяце нет 50 дней;
г) все деревья растут в лесу;
д) Ни одно дерево не растет в лесу;
е) Некоторые деревья растут в лесу;
ж) некоторые ученики нашего класса были на Луне.