Что называется вершинами гиперболы

Что такое гипербола

Что называется вершинами гиперболы

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

Что называется вершинами гиперболы

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Что называется вершинами гиперболы

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

Что называется вершинами гиперболы
Что называется вершинами гиперболы

Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

Способ такой же, как при построении эллипса. Из полученного канонического уравнения

Что называется вершинами гиперболы

на черновике выражаем:

Что называется вершинами гиперболы

Уравнение распадается на две функции:

Что называется вершинами гиперболы

— определяет верхние дуги гиперболы (то, что ищем);

Что называется вершинами гиперболы

— определяет нижние дуги гиперболы.

Далее найдем точки с абсциссами x = 3, x = 4:

Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

Действительная ось гиперболы — отрезок А1А2.

Расстояние между вершинами — длина |A1A2| = 2a.

Действительная полуось гиперболы — число a = |OA1| = |OA2|.

Мнимая полуось гиперболы — число b.

В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

Что называется вершинами гиперболы

Форма гиперболы

Повторим основные термины и узнаем, какие у гиперболы бывают формы.

Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

Что называется вершинами гиперболы

Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

Что называется вершинами гиперболы

Фокальное свойство гиперболы

Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

Что называется вершинами гиперболы

Рассмотрим, как это выглядит на прямоугольной системе координат:

Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

Что называется вершинами гиперболы

Запишем это уравнение в координатной форме:

Что называется вершинами гиперболы

Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

Что называется вершинами гиперболы

, т.е. выбранная система координат является канонической.

Директориальное свойство гиперболы

Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

Директориальное свойство гиперболы звучит так:

Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

Что называется вершинами гиперболы

На самом деле для фокуса F2 и директрисы d2 условие

Что называется вершинами гиперболы

можно записать в координатной форме так:

Что называется вершинами гиперболы

Что называется вершинами гиперболы

Построение гиперболы

Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

Что называется вершинами гиперболы

Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

Что называется вершинами гиперболы

Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

По определению эксцентриситет гиперболы равен Что называется вершинами гиперболы

Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

Источник

Гипербола

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Функция заданная формулой \(y=\frac\), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции \(y=\frac\) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

Что называется вершинами гиперболы гипербола, где k y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
Что называется вершинами гиперболы

Пример №2:
$$y=\frac<1>-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
Что называется вершинами гиперболы

Что называется вершинами гиперболы

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
Что называется вершинами гиперболы

Что называется вершинами гиперболы

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
Что называется вершинами гиперболы

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.

Что называется вершинами гиперболы

5. Гипербола нечетная функция.

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
Что называется вершинами гиперболы

Что называется вершинами гиперболы

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k Category: 8 класс, База знаний, Уроки Tag: Гипербола Leave a comment

Источник

Содержание:

Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения Что называется вершинами гиперболы, т.е. уравнение фигуры задает эту фигуру.

Возможны два вида задач:

Первая задача сводится к построению графика уравнения Что называется вершинами гиперболыи решается, чаще всего, методами математического анализа.

Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:

Эллипс

Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек Что называется вершинами гиперболы, есть величина постоянная (большая, чем расстояние между Что называется вершинами гиперболы).

Если а =Ь, то уравнение (7.3) можно переписать в виде:

Что называется вершинами гиперболы(7.5)

Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку Что называется вершинами гиперболыкоординаты которой задаются формулами Что называется вершинами гиперболыбудет окружность (4) переводить в эллипс, заданный соотношением Что называется вершинами гиперболы

Число Что называется вершинами гиперболыназывается эксцентриситетом эллипса. Эксцентриситет Что называется вершинами гиперболыхарактеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении Что называется вершинами гиперболыстановится более вытянутым

Что называется вершинами гиперболы

Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е. Что называется вершинами гиперболы

Гипербола

Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек Что называется вершинами гиперболыесть величина постоянная (не равная нулю и меньшая, чем расстояние между Что называется вершинами гиперболы).

Что называется вершинами гиперболы

Тогда Что называется вершинами гиперболыА расстояние Что называется вершинами гиперболыПодставив в формулу r=d, будем иметьЧто называется вершинами гиперболы. Возведя обе части равенства в квадрат, получимЧто называется вершинами гиперболы

Что называется вершинами гиперболыили

Что называется вершинами гиперболы(9.4.1)

Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения Что называется вершинами гиперболытакже определяют параболы.

Легко показать, что уравнение Что называется вершинами гиперболы, определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а Что называется вершинами гиперболыО. Для этого выделим полный квадрат:

Что называется вершинами гиперболы

и сделаем параллельный перенос по формуламЧто называется вершинами гиперболыЧто называется вершинами гиперболы

Пример:

Что называется вершинами гиперболы

Кривые второго порядка на плоскости

Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:

Что называется вершинами гиперболы

где коэффициенты А, В и С не равны одновременно нулю Что называется вершинами гиперболы

Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.

Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.

Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению

Что называется вершинами гиперболыкоторое называют каноническим уравнением эллипса.

Число а называют большей полуосью эллипса, число Что называется вершинами гиперболы— мень-

Что называется вершинами гиперболы

Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.

В случае а=b каноническое уравнение эллипса принимает вид Что называется вершинами гиперболыи определяет окружность радиуса а с центром в начале координат.

Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.

Так, в случае а>b эксцентриситет эллипса выражается формулой:

Что называется вершинами гиперболы

Эксцентриситет изменяется от нуля до единицы Что называется вершинами гиперболыи характеризует форму эллипса. Для окружности Что называется вершинами гиперболыЧем больше эксцентриситет, тем более вытянут эллипс.

Пример:

Показать, что уравнение

Что называется вершинами гиперболы

является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.

Решение:

Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:

Что называется вершинами гиперболы

Что называется вершинами гиперболы— каноническое уравнение эллипса с центром в точке Что называется вершинами гиперболыбольшей полуосью а=3 и меньшей полуосью Что называется вершинами гиперболы

Найдем эксцентриситет эллипса:

Что называется вершинами гиперболы

Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке Что называется вершинами гиперболыа оси Что называется вершинами гиперболыпараллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е. Что называется вершинами гиперболы

В новой системе координат координаты Что называется вершинами гиперболывершин и фокусов гиперболы будут следующими:

Что называется вершинами гиперболы

Переходя к старым координатам, получим:

Что называется вершинами гиперболы

Построим график эллипса.

Что называется вершинами гиперболыЗадача решена.

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.

Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *