Что называется узлом ветвью и контуром разветвленной электрической цепи
Топологические понятия электрических цепей: ветвь, узел, контур.
Электрическая цепь, ее элементы, схема замещения.
Электрическая цепь – это совокупность устройств, предназначенных для взаимного преобразования, передачи и распределения электрической энергии. Если все эти три процесса происходить при токах и напряжениях постоянных во времени, то такие цепи наз-ся цепями постоянного тока. Отдельное устройство, входящее в состав электрической цепи и выполняющее в ней определённую функцию, называется элементом электрической цепи. К основным элементам относятся источники электрической энергии и приёмники этой энергии. (источники энергии, резисторы, катушки, конденсаторы, гальванические элементы, камутаторы и т.д.). Схема замещения – графическое изображение электрической цепи, содержащее условные обозначения её основных элементов и способы их соединения. На этой схеме реальные элементы замещаются расчётными моделями (идеализированными элементами). Схемами замещения пользуются при расчёте режима работы электрической цепи.
Топологические понятия электрических цепей: ветвь, узел, контур.
Ветвь – это участок электрической схемы, на котором все элементы соединены последовательно и по которым течет один и тот же ток.
3. Законы Кирхгофа для цепей постоянного тока.
Первый закон Кирхгофа. Алгебраическая сумма токов, сходящихся в узле равна нулю.
Количество уравнений по первому закону: у – 1. У – количество узлов.
Второй закон Кирхгофа.1)Алгебраическая сумма напряжений в замкнутом контуре равна нулю.
2) Алгебраическая сумма падений напряжений в замкнутом контуре равна алгебраической сумме ЭДС.
Ветвь, узел, контур электрической цепи. Законы Кирхгофа
Ветвь, узел, контур электрической цепи. Законы Кирхгофа
В схемах электрических цепей можно выделить характерные элементы: ветвь, узел, контур.
Ветвью электрической цепи называется ее участок, на всем протяжении которого величина тока имеет одинаковое значение.
Узлом электрической цепи (узловой точкой) называется место соединения электрических ветвей.
Контуром электрической цепи называют замкнутое соединение, которое могут входить несколько ветвей.
Ветви, содержащие источник электрической энергии, называются активными, а ветви, не содержащие источников, называются пассивными.
Первый закон Кирхгофа:
В разветвленной цепи ток в различных ветвях может иметь различное значение. Сумма токов, входящих в узловую точку разветвленной цепи, должна быть равна сумме токов, выходящих из этой точки (алгебраическая сумма токов в ветвях, соединённых в один узел, равна нулю).
Второй закон Кирхгофа:
Алгебраическая сумма ЭДС в замкнутом контуре электрической цепи равна алгебраической сумме падений напряжений на всех участках этой цепи.
Эта страница взята со страницы лекций по предмету теоретические основы электротехники (ТОЭ):
Возможно эти страницы вам будут полезны:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
ОСНОВНЫЕ ПОНЯТИЯ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Электрической цепью называют совокупность устройств, предназ- наченных для получения, передачи, преобразования и использования элект- рической энергии. В состав электрической цепи входят источники электро- энергии, приемники электроэнергии и соединительные провода.
Графическое изображение электрической цепи называется электрической схемой (Рис.3.1). Основными элементами такой схемы являются: ветвь, узел, контур.
Ветвь – это участок электрической цепи, состоящий из одного или нескольких проводников, по которым протекает один и тот же ток. Два крайних конца ветви называются узлами.
Узел – это точка соединения трех или более ветвей.
Контур – это участок цепи, состоящий из одной или нескольких ветвей, образующий при последовательном прохождении элементов, замкнутый путь.
Узел на схеме изображается точкой и обозначается буквой или цифрой. Контур, как правило, обозначается римской цифрой. В качестве провода отрицательной полярности «-» может использоваться металлический корпус устройства «масса» и обозначаться на схеме в виде ( ).
В зависимости от количества ветвей и контуров электрические цепи делятся на простые и разветвленные (многоконтурные). В зависимости от линей- ности характеристик цепи делятся на линейные и нелинейные. В зависимос- ти от рода тока цепи делятся на цепи постоянного и переменного тока.
Основные величины, законы, режимы работы, методы расчета для цепей постоянного и переменного тока, аналогичны однако есть и особенности.
Что такое электрическая схема, ветвь, узел, контур.
Электрическая схема представляет собой графическое изображение электрической цепи. Она показывает, как осуществляется соединение элементов в рассматриваемой электрической цепи.
Простым языком электрическая схема это упрощенное изображение электрической цепи.
Для отображение электрических компонентов (конденсаторов, резисторов, микросхем и т. д.) в электрических схемах используются их условно графические обозначения.
Для отображения электрических соединений (дорожек, проводов, соединения между радиоэлементами) применяют простую линию соединяющие два условно графических обозначения. Причём все ненужные изгибы дорожек удаляют.
В состав электрической схемы входят: ветвь и условно графические обозначение электрических элементов так же могут входить контур и узел.
Ветвь – участок цепи состоящий из одного или нескольких элементов вдоль которого ток один и тот же.
Ветви присоединённые к одной паре узлов называются параллельными.
Любой замкнутый путь, проходящий по нескольким ветвям называется контуром. На верхнем рисунке, контурами можно считать ABD; BCD; ABC.
Узел – место соединения трёх и более ветвей.
Точки К и Е не являются узлами.
Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур.
Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур.
Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.
Узел. Узел – это точка электрической цепи, где сходится не менее трех ветвей. Узел обозначается на схеме жирной точкой ( ) в том месте, где ветви соединяются между собой. В качестве примера на рис. 19 показаны узлы A,B,C. Узлы в схеме, показанной на рис. 20, определите самостоятельно.
Ветвь. Ветвь – это участок электрической цепи с последовательным соединением элементов, расположенный между двумя узлами. Подчеркнем, что именно споследовательным соединением элементов. Например на рис. 19 участок цепи между узлами А и В является ветвью. Ветвью является и участок цепи между узлами В иС. А вот участок цепи между узлами А и С ветвью не является. Сами подумайте почему. В схеме, показанной на рис. 20, имеется 6 ветвей. Определите их самостоятельно.
Контур. Контуром называют любой замкнутый участок электрической цепи. Особо следует выделить понятие «независимый контур». Независимый контур – это контур, в который входит хотя бы одна ветвь, не входящая в другие контуры.
Работа и мощность в цепи постоянного тока.
Работа тока— это работа электрического поля по переносу электрических зарядов вдоль проводника;
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.
Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:
По закону сохранения энергии:
работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия
равна работе тока.
При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.
Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.
По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.
[Q] = 1 Дж
МОЩНОСТЬ ПОСТОЯННОГО ТОКА
— отношение работы тока за время t к этому интервалу времени.
Первый закон Кирхгофа.
Сколько тока втекает в узел, столько из него и вытекает. i2 + i3 = i1 + i4
Первое правило Кирхгофа (правило токов Кирхгофа) гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий — отрицательным:
Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.
7. Расчет цепи методом эквивалентных структурных преобразований.
Метод эквивалентных структурных преобразований.
В основе различных методов преобразования электрических схем лежит понятие эквивалентности, согласно которому напряжения и токи в ветвях схемы, не затронутых преобразованием, остаются неизменными. Преобразования электрических схем применяются для упрощения расчетов. Рассмотрим наиболее типичные методы преобразования. Последовательное соединение элементов.
При последовательном соединении элементов через них протекает один и тот же ток I (рис. 1.18). Согласно второму закону Кирхгофа, напряжение, приложенное ко всей цепи
(1.27)
Для последовательного соединения сопротивлений r1,r2. rn (рис. 1.18) с учетом (1.6) будем иметь
(1.28)
Ток в цепи с последовательным соединением элементов равен:
(1.29)
а напряжение на n-ом элементе равно
(1.30)
Параллельное соединение элементов.
Соединение групп элементов, при котором все элементы находятся под одним и тем же напряжением, называется параллельным (рис. 1.20). Согласно первому Кирхгофа, ток всей цепи I равен алгебраической сумме токов в параллельных ветвях, т.е.
(1.31)
На основании этого уравнения с учетом (1.8) для параллельного соединения резистивных элементов получаем:
(1.32)
где -эквивалентная проводимость.
Токи и мощности параллельно соединенных ветвей при U=const (рис. 1.20) не зависят друг от друга и определяются по формулам:
(1.33)
Мощность всей цепи равна :
, (1.34)
При увеличении числа параллельных ветвей эквивалентная проводимость электрической цепи возрастает, а эквивалентное сопротивление соответственно уменьшается. Это приводит к увеличению тока I. Если напряжение остается постоянным, то увеличивается также общая мощность Р. Токи и мощности ранее включенных ветвей не изменяются.
Рассмотрим частные случаи параллельного соединения резистивных элементов.
а) параллельное соединение двух элементов
б) параллельное соединение n ветвей с одинаковыми сопротивлениями
(1.36)
Баланс мощностей.
Все расчеты в электрических цепях проверяют балансом мощностей.
Баланс основан на законе сохранения и превращения энергии: сколько энергии выработали источники, столько же ее нагрузки должны потребить. Вместо энергии в балансе можно использовать мощность. Выработанная мощность всеми источниками должна быть равна суммарной мощности, расходуемой в нагрузках.
Баланс мощностей можно сформулировать так: алгебраическая сумма мощностей источников, должна быть равна арифметической сумме мощностей нагрузок. Если направление ЭДС и направление тока ветви не совпадают, то составляющая мощности этого источника в балансе мощностей берется со знаком «минус».
Мощность, отдаваемая источниками ЭДС, равна.
Если в резисторе не происходит химических реакций, то мощность выделяется в форме тепла, согласно известному закону Джоуля.
где:
I — постоянный ток (А), протекающий через резистор;
PП — мощность потерь, измеряемая в ваттах (Вт);
R — сопротивление резистора (Ом).
Равенство выражений мощностей источников и мощностей приемников называется уравнением баланса мощностей.
План составления баланса мощностей
1. Если в цепи есть источники тока, то следует любым методом найти напряжения на зажимах источников тока Uk.
Цепи с источником тока |
2. вычислить мощность источников.
|
3.
где:
N — количество источников тока в цепи;
M — количество источников ЭДС в цепи;
Uk — напряжение на источниках тока Jk;
| — | алгебраическая сумма, здесь положительны те из слагаемых, для которых направления ЭДС Еk и соответствующего тока Ik совпадают, в противном случаи слагаемое отрицательно; | |||
| — | алгебраическая сумма, здесь положительны те из слагаемых, для которых направление напряжения на зажимах источника тока Uk и направление его тока Jk во внешней цепи совпадают, в противном случаи слагаемое отрицательно. |
4. вычислить мощность, расходуемую в приемниках.
|
L | — | количество приемников в цепи; | |||
| — | арифметическая сумма, здесь должны быть учтены как внешние резисторы, так и внутренние сопротивления самих источников. |
6. Получаем равенство.
Мощность трехфазной цепи.
При неравномерной нагрузке фаз активная мощность Р трехфазной системы равна сумме мощностей отдельных ее фаз:
При равномерной нагрузке трехфазной системы активные мощности Рф всех трех фаз равны, поэтому активная мощность трехфазной системы
Активную мощность можно выразить также через линейные ток Iл и напряжение Uл. Учитывая зависимости между фазными и линейными токами и напряжениями для схем «звезда» и «треугольник» при равномерной нагрузке фаз, имеем:
Аналогично могут быть получены формулы для реактивной и полной мощностей при равномерной нагрузке фаз:
Электрическая цепь и её элементы. Электрическая схема, понятия: ветвь, узел, контур.
Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.
Узел. Узел – это точка электрической цепи, где сходится не менее трех ветвей. Узел обозначается на схеме жирной точкой ( ) в том месте, где ветви соединяются между собой. В качестве примера на рис. 19 показаны узлы A,B,C. Узлы в схеме, показанной на рис. 20, определите самостоятельно.
Ветвь. Ветвь – это участок электрической цепи с последовательным соединением элементов, расположенный между двумя узлами. Подчеркнем, что именно споследовательным соединением элементов. Например на рис. 19 участок цепи между узлами А и В является ветвью. Ветвью является и участок цепи между узлами В иС. А вот участок цепи между узлами А и С ветвью не является. Сами подумайте почему. В схеме, показанной на рис. 20, имеется 6 ветвей. Определите их самостоятельно.
Контур. Контуром называют любой замкнутый участок электрической цепи. Особо следует выделить понятие «независимый контур». Независимый контур – это контур, в который входит хотя бы одна ветвь, не входящая в другие контуры.