Что называется упругостью древесины
Упругость древесины
Под упругостью древесины понимают её способность сопротивляться изменению формы или объёма под воздействием механических напряжений.
Упругость зависит от влажности, объёмного веса, прямослойности древесины и размеров сердцевинных лучей в ней.
При кратковременных нагрузках до напряжений, соответствующих пределу пропорциональности (т.е. до момента необратимости деформации) деформация древесины пропорциональна напряжению и исчезает после снятия нагрузки.
Основными показателями упругости древесины являются модуль упругости, модуль сдвига, и коэффициент деформации. Испытания проводят на малых образцах с чистой древесиной, по направлениям :- вдоль волокон, — радиально поперёк волокон, — тангенциально поперёк волокон.
В столярстве редко нужно учитывать упругость древесины. Чаще, наверное, в плотничестве, при сооружении стропильных и кровельных систем. Например модуль упругости на статический изгиб у сосны- 12,6 ГПа, у ели- 11,0 ГПа, у берёзы- 15,4 ГПа, у дуба- 15,4 ГПа.
Как видим модуль упругости не всегда выше у пород с более твёрдой древесиной. А, например, М. У. у берёзы вдоль волокон выше, чем у дуба и на сжатие и на растяжение. У сосны же М. У. на сжатие в радиальном направлении выше, чем у берёзы.
Свойство древесины внезапно разрушаться под воздействием механических сил без значительного изменения формы называется хрупкостью. Абсолютно хрупкой древесины нет, что объясняется её волокнистым строением. Наиболее хрупкой считают древесину ольхи.
В древнем Новгороде делали луки из 4-5 ясеневых пластинок, склеенных между собой костным клеем. Луки получались мощными и дальнобойными благодаря упругости древесины ясеня. Топорища боевых топоров тоже часто делались из этой же древесины. Но здесь больше делался упор на ударную вязкость. Для того чтобы гасить удары древесину часто используют как природный аммортизатор. Её подкладывают под наковальни, делают из неё колоды для рубки мяса и другое.
Справочник | Лесоматериалы | Деревянное строительство
Вы здесь
Механические свойства древесины
К механическим свойствам древесины относятся: прочность, твёрдость, жёсткость, ударная вязкость и другие.
Прочность — способность древесины сопротивляться разрушению от механических усилий, характеризующихся пределом прочности. Прочность древесины зависит от направления действия нагрузки, породы дерева, плотности, влажности, наличия пороков.
Существенное влияние на прочность древесины оказывает только связанная влага, содержащаяся в клеточных оболочках. При увеличении количества связанной влаги прочность древесины уменьшается (особенно при влажности 20-25%). Дальнейшее повышение влажности за предел гигроскопичности (30%) не оказывает влияния на показатели прочности древесины. Показатели пределов прочности можно сравнивать только при одинаковой влажности древесины. Кроме влажности на показатели механических свойств древесины оказывает влияние и продолжительность действия нагрузок.
Вертикальные статические нагрузки — это постоянные или медленно возрастающие. Динамические нагрузки, наоборот, действуют кратковременно. Нагрузку, разрушающую структуру древесины, называют разрушительной. Прочность, граничащую с разрушением, называют пределом прочности древесины, её определяют и измеряют образцами древесины. Прочность древесины измеряют в Па/см2 (кгс на 1 см2) поперечного сечения образца в месте разрушения, (Па/см2 (кг с/см2).
Сопротивление древесины определяют как вдоль волокон, так и в радиальном и тангенциальном направлении. Различают основные виды действий сил: растяжение, сжатие, изгиб, скалывание. Прочность зависит от направления действия сил, породы дерева, плотности древесины, влажности и наличия пороков. Механические свойства древесины приведены в таблицах.
Чаще всего древесина работает на сжатие, например, стойки и опоры. Сжатие вдоль волокон действует в радиальном и тангенциальном направлении (рис. 1).
Предел прочности на растяжение. Средняя величина предела прочности при растяжении вдоль волокон для всех пород составляет 1300 кгс/см2. На прочность при растяжении вдоль волокон оказывает большое влияние строение древесины. Даже небольшое отклонение от правильного расположения волокон вызывает снижение прочности.
Прочность древесины при растяжении поперёк волокон очень мала и в среднем составляет 1/20 часть от предела прочности при растяжении вдоль волокон, то есть 65 кгс/см2. Поэтому древесина почти не применяется в деталях, работающих на растяжение поперёк волокон. Прочность древесины на растяжение поперёк волокон имеет значение при разработке режимов резания и режимов сушки древесины.
Рис. 1. Испытание механических свойств древесины на сжатие: а — вдоль волокон; б — поперек волокон — радиально; в — поперек волокон — тангенциально. |
Предел прочности при сжатии. Различают сжатие вдоль и поперёк волокон. При сжатии вдоль волокон деформация выражается в небольшом укорочении образца. Разрушение при сжатии начинается с продольного изгиба отдельных волокон, которое во влажных образцах из мягких и вязких пород проявляется как смятие торцов и выпучивание боков, а в сухих образцах и в твёрдой древесине вызывает сдвиг одной части образца относительно другой.
Средняя величина предела прочности при сжатии вдоль волокон для всех пород составляет 500 кгс/см2.
Прочность древесины при сжатии поперёк волокон ниже, чем вдоль волокон примерно в 8 раз. При сжатии поперёк волокон не всегда можно точно установить момент разрушения древесины и определить величину разрушающего груза.
Древесину испытывают на сжатие поперёк волокон в радиальном и тангенциальном направлениях. У лиственных пород с широкими сердцевинными лучами (дуб, бук, граб) прочность при радиальном сжатии выше в полтора раза, чем при тангенциальном; у хвойных — наоборот, прочность выше при тангенциальном сжатии.
Рис. 2. Испытание механических свойств древесины на изгиб. |
Предел прочности при статическом изгибе. При изгибе, особенно при сосредоточенных нагрузках, верхние слои древесины испытывают напряжение сжатия, а нижние — растяжения вдоль волокон. Примерно посередине высоты элемента проходит плоскость, в которой нет ни напряжения сжатия, ни напряжения растяжения. Эту плоскость называют нейтральной; в ней возникают максимальные касательные напряжения. Предел прочности при сжатии меньше, чем при растяжении, поэтому разрушение начинается в сжатой зоне. Видимое разрушение начинается в растянутой зоне и выражается в разрыве крайних волокон. Предел прочности древесины зависит от породы и влажности. В среднем для всех пород прочность при изгибе составляет 1000 кгс/см2, то есть в 2 раза больше предела прочности при сжатии вдоль волокон.
Рис. 3. Сдвиг древесины: а — вдоль волокон; б — перпендикулярно волокнам. |
Рис. 4. Сдвиг деталей: а — обыкновенный; б — двойной. |
Прочность древесины при сдвиге. Внешние силы, вызывающие перемещение одной части детали по отношению к другой, называют сдвигом. Различают три случая сдвига: скалывание вдоль волокон, поперёк волокон и перерезание.
Прочность при скалывании вдоль волокон составляет 1/5 часть от прочности при сжатии вдоль волокон. У лиственных пород, имеющих широкие сердцевинные лучи (бук, дуб, граб), прочность на скалывание по тангенциальной плоскости на 10-30% выше, чем по радиальной.
Предел прочности при скалывании поперёк волокон примерно в два раза меньше предела прочности при скалывании вдоль волокон. Прочность древесины при перерезании поперёк волокон в четыре раза выше прочности при скалывании.
Рис. 5. Направление сил в деревянной конструкции, находящейся под нагрузкой: 1 — сдвиг на скалывание; 2 — сжатие; 3 — растяжение; 4 — изгиб; 5 — сжатие. |
Твёрдость древесины имеет существенное значение при обработке её режущими инструментами: фрезеровании, пилении, лущении, а также в тех случаях, когда она подвергается истиранию при устройстве полов, лестниц перил.
Твёрдость древесины
Эбеновое дерево
Акация белая
Олива
Падук
Ярра
Афромозия
Кумару
Граб
Лапачо
Вяз гладкий
Амарант
Берёза
Орех грецкий
Тиковое дерево
Кемпас
Ирокко (камбала)
Бамбук
Вишня
Панга-панга
Ольха
Венге
Лиственница
Гуатамбу
Клён полевой
Клен остролистый
Сосна
Ясень
Сосна корейская
Мербау
Осина
Сукупира
Кумьер
Ятоба (мерил)
Груша
Свитения (махагони)
Сапелли
Дуссие
Липа
Мутения
Каштан
Порода дерева | Твердость, МПа (кгс/см 2 ) | ||
для поверхности поперечного разреза | для поверхности радиального разреза | для поверхности тангенциального разреза | |
Липа | 19,0(190) | 16,4(164) | 16,4(164) |
Ель | 22,4(224) | 18,2(182) | 18,4(184) |
Осина | 24,7(247) | 17,8(178) | 18,4(184) |
Сосна | 27,0(270) | 24,4(244) | 26,2(262) |
Лиственница | 37,7(377) | 28,0(280) | 27,8(278) |
Береза | 39,2(392) | 29,8(298) | 29,8(298) |
Бук | 57,1 (571) | 37,9(379) | 40,2(402) |
Дуб | 62,2(622) | 52,1(521) | 46,3(463) |
Граб | 83,5(835) | 61,5(615) | 63,5(635) |
Ударная вязкость характеризует способность древесины поглощать работу при ударе без разрушения и определяется при испытаниях на изгиб. Ударная вязкость у древесины лиственных пород в среднем в 2 раза больше, чем у древесины хвойных пород. Ударную твёрдость определяют, сбрасывая стальной шарик диаметром 25 мм с высоты 0,5 м на поверхность образца, величина которого тем больше, чем меньше твёрдость древесины.
Износостойкость — способность древесины сопротивляться износу, т.е. постепенному разрушению её поверхностных зон при трении. Испытания на износостойкость древесины показали, что износ с боковых поверхностей значительно больше, чем с поверхности торцевого разреза. С повышением плотности и твёрдости древесины износ уменьшился. У влажной древесины износ больше, чем у сухой.
Способность древесины удерживать металлические крепления: гвозди, шурупы, скобы, костыли и др. — важное её свойство. При забивании гвоздя в древесину возникают упругие деформации, которые обеспечивают достаточную силу трения, препятствующую выдёргиванию гвоздя. Усилие, необходимое для выдёргивания гвоздя, забитого в торец образца, меньше усилия, прилагаемого к гвоздю, забитому поперёк волокон. С повышением плотности сопротивление древесины выдергиванию гвоздя или шурупа увеличивается. Усилия, необходимые для выдёргивания шурупов (при прочих равных условиях), больше, чем для выдёргивания гвоздей, так как в этом случае к трению присоединяется сопротивление волокон перерезанию и разрыву.
Основные технические свойства различных древесных пород
Порода дерева | Коэффициент усушки, % | Механическая прочность для древесины с 15 %-ной влажностью, МПа (кгс/см 2 ) | ||||
в радиальном направлении | в тангенциальном направлении | на сжатие вдоль волокон | на изгиб | скалывание | ||
в радиальной плоскости | в тангециальной плоскости | |||||
Хвойные древесные породы | ||||||
Сосна | 0,18 | 0,33 | 43,9 | 79,3 | 6,9(68) | 7,3(73) |
Ель | 0,14 | 0,24 | 42,3 | 74,4 | 5,3(53) | 5,2(52) |
Лиственница | 0,22 | 0,40 | 51,1 | 97,3 | 8,3(83) | 7,2(72) |
Пихта | 0,9 | 0,33 | 33,7 | 51,9 | 4,7(47) | 5,3(53) |
Твердолиственные древесные породы | ||||||
Дуб | 0,18 | 0,28 | 52,0 | 93,5 | 8,5(85) | 10,4(104) |
Ясень | 0,19 | 0,30 | 51,0 | 115 | 13,8(138) | 13,3(133) |
Береза | 0,26 | 0,31 | 44,7 | 99,7 | 8,5(85) | 11(110) |
Клен | 0,21 | 0,34 | 54,0 | 109,7 | 8,7(87) | 12,4(124) |
Ильм | 0,22 | 0,44 | 48,6 | 105,7 | — | 13,8(138) |
Вяз | 0,15 | 0,32 | 38,9 | 85,2 | 7(70) | 7,7(77) |
Мягколиственные древесные породы | ||||||
Осина | 0,2 | 0,32 | 37,4 | 76,6 | 5,7(57) | 7,7(77) |
Липа | 0,26 | 0,39 | 39 | 68 | 7,3(73) | 8(80) |
Черная ольха | 0,16 | 0,23 | 36,8 | 69,2 | — | — |
Черная осина | 0,16 | 0,31 | 35,1 | 60 | 5,8(58) | 7,4(74) |
Нормативная сопротивляемость чистой древесины сосны и ели
Средние показатели сопротивления древесины выдергиванию гвоздей
чем отличается упругость древесины от её прочности?
Прочность — способность древесины сопротивляться разрушению от механических усилий, характеризующихся пределом прочности.
Прочность древесины зависит от направления действия нагрузки, породы дерева, плотности, влажности, наличия пороков.
Существенное влияние на прочность древесины оказывает только связанная влага, содержащаяся в клеточных оболочках. При увеличении количества связанной влаги прочность древесины уменьшается (особенно при влажности 20-25%). Дальнейшее повышение влажности за предел гигроскопичности (30%) не оказывает влияния на показатели прочности древесины. Показатели пределов прочности можно сравнивать только при одинаковой влажности древесины. Кроме влажности на показатели механических свойств древесины оказывает влияние и продолжительность действия нагрузок.
Твёрдость торцовой поверхности выше твёрдости боковой поверхности (тангенциальной и радиальной) на 30% у лиственных пород и на 40% у хвойных. По степени твёрдости все древесные породы можно разделить на три группы: 1) мягкие — торцовая твёрдость 40 МПа и менее (сосна, ель, кедр, пихта, можжевельник, тополь, липа, осина, ольха, каштан); 2) твёрдые — торцовая твёрдость 40,1-80 МПа (лиственница, сибирская берёза, бук, дуб, вяз, ильм, карагач, платан, рябина, клён, лещина, орех грецкий, хурма, яблоня, ясень); 3) очень твёрдые — торцовая твёрдость более 80 МПа (акация белая, берёза железная, граб, кизил, самшит, фисташки, тис).
Твёрдость древесины имеет существенное значение при обработке её режущими инструментами: фрезеровании, пилении, лущении, а также в тех случаях, когда она подвергается истиранию при устройстве полов, лестниц перил. http://les.novosibdom.ru/node/1
Прочность древесины — это свойство материала сопротивляться разрушению под действием внешних нагрузок. Наибольшие нагрузки выдерживает древесина дуба, бука, берёзы, лиственницы. Менее прочной является древесина липы, ели, ольхи, ясеня.
Упругость — свойство древесины восстанавливать свою первоначальную форму после прекращения действия нагрузки. Упругость зависит от влажности, плотности и возраста древесины. Чем древесина суше и плотнее, тем она более упругая. Древесина клёна, ясеня, бука, вяза и берёзы обладает большей упругостью, чем остальные древесные породы.
Упругость и пластичность древесины. Модуль упругости древесины
от Ирина Железняк
Упругость древесины является одной из главных характеристик механических свойств дерева. Упругостью называют способность материала, в данном случае – дерева, сопротивляться деформации под действием механического напряжения.
Упругость древесины зависит от нескольких параметров древесины:
— объемного веса. Легкая древесина не так упруга, как тяжелая и плотная
— размеры сердцевинных лучей. Например, у хвойных пород древесины сердцевинные лучи однорядные и очень мелкие, поэтому такая древесина отличается большой упругостью, невзирая на относительно небольшой удельный вес.
— заболонная древесина менее упруга, чем ядровая.
Модуль упругости дерева
При недлительных нагрузках до напряжений, которые соответствуют пределу пропорциональности (иными словами – до момента, когда процесс деформации окажется необратимым), деформация материала пропорциональна его напряжению, и после снятия нагрузки исчезает. Упругость древесины также именуют жесткостью древесины или деформативностью древесины.
— Модуль упругости древесины Е – это соотношение между нормальными напряжениями и относительными деформациями. Различают следующие модули упругости: вдоль волокон Еа, поперек волокон тангенциальный Еt, поперек волокон радиальный Еr, модуль упругости при изгибе Еизг;
— Модуль сдвига древесины G – это соотношение между касательными напряжениями и относительным сдвигом
— Коэффициент поперечной деформации дерева µ – это соотношение поперечной деформации к продольной, которые возникают при нагрузке стержня.
Модуль упругости древесины основных пород
Модуль упругости дерева исчисляется в МПа, или в кГс/см 2 (1 МПа = 10,19716213 кГс/см 2 ))
Коэффициенты поперечной деформации основных пород дерева
Порода древесины | µra | µta | µar | µtr | µat | µrt |
Береза | 0,58 | 0,45 | 0,043 | 0,81 | 0,04 | 0,49 |
Ель | 0,44 | 0,411 | 0,017 | 0,48 | 0,031 | 0,025 |
Сосна | 0,49 | 0,41 | 0,03 | 0,79 | 0,037 | 0,038 |
Дуб | 0,43 | 0,41 | 0,07 | 0,83 | 0,09 | 0,34 |
Модуль сдвига основных пород древесины
Порода | Gra (МПа) | Gta (МПа) | Grt (Мпа) |
Береза | 1 510 | 870 | 230 |
Ель | — | — | 50 |
Сосна | 1 210 | 780 | — |
Дуб | 1 380 | 980 | 460 |
Модуль упругости древесины обязательно учитывается при сооружении кровельных и стропильных систем, поскольку определение внутренних усилий древесины от воздействия нагрузок играет здесь очень важную роль. К тому же, упругость древесины имеет значение при изготовлении ружейных лож, ручек к ударным инструментам, молотам и прочим случаям, где необходимо смягчить толчки.
Пластичность древесины
Говоря об упругости древесины, невозможно не упомянуть о ее антиподе – пластичности. Пластичность древесины – это ее способность изменять форму при воздействии нагрузки и сохранять ее и после воздействия нагрузки. Данный показатель зависит от тех же факторов, что и упругость, однако их действие будет обратным (чем влажнее древесина – тем она пластичней, чем старше – тем менее пластична и т.д.).
Пластичность древесины можно повысить путем пропарки или проварки горячей водой. Такие методы используют при производстве гнутой мебели, полозьев для саней и прочих мест, где пластичность дерева играет ключевую роль. Среди популярных пород древесины наибольшей пластичностью обладают бук, вяз, ясень и дуб. В частности, у бука хорошая пластичность обусловлена множеством крупных сердцевинных лучей, которые изгибают древесные волокна. У вяза, ясеня и дуба при изгибании крупные сосуды, расположенные кольцевыми рядами в годовых слоях, значительно сдавливаются поздней, более плотной, древесиной, чем и объясняется их высокая пластичность.
Татьяна Кузьменко, член редколлегии Собкор интернет-издания «AtmWood. Дерево-промышленный вестник»
Насколько информация оказалась для Вас полезной?
Модуль упругости древесины
Упругость древесины – способность к восстановлению исходной формы после прекращения действия нагрузки. Это механическая характеристика, присущая строительным материалам, в том числе, дереву. Характеристика математически выражается модулем упругости – соотношением между нормальными напряжениями и относительными деформациями.
Несмотря на развитие технологий, появления большого разнообразия строительных материалов, дерево было и остается тем материалом, которому отдают предпочтение многие профессиональные строители и заказчики. Дерево как строительный материал используется с незапамятных времен. Сейчас внешний вид, конструкция построек из него значительно изменились. Пролеты деревянных построек могут достигать 120 м! Проектируя подобные строения, обязательно определяют внутренние усилия от действия внешних сил, в том числе с учетом деформированного состояния. В программах для подобных расчетов одной из исходных характеристик является модуль упругости. Рассчитывая этот показатель, определяют, какую нагрузку будет испытывать доска или брус без необратимой деформации, то есть не ломаясь. Чем больше значение характеристики, тем жестче материал.
Параметры, от которых зависит упругость древесины
Модуль упругости древесины — параметр изменяющийся, на его значение влияют:
Нормативная документация
Упругость строительных материалов, древесины в частности, в значительной мере влияет на уровень безопасности для людей зданий и сооружений, а так же сохранности материальных ценностей в них находящихся. Поэтому разрабатываются и утверждаются нормативные документы, определяющие методологию определения параметра упругости а так же расчетов и проектирования конструкций из клееной и цельной древесины.
СНиП II-25-80. Деревянные конструкции. Строительные нормы и правила
СНиП II-25-80. Свод правил. Деревянные конструкции. Этот документ определяет методологию расчета и проектирования зданий, сооружений и конструкций из древесины (цельной и клееной). В том числе в СНиП определенно что конструкции из древесины должны:
ГОСТ 16483.9-73 Древесина. Методы определения модуля упругости при статическом изгибе
ГОСТ 16483.9-73. Межгосударственный стандарт. Древесина. Методы определения модуля упругости при статическом изгибе. В данном ГОСТе:
Модуль упругости дерева
Древесина считается упругой, если она после устранения действия силы изгибающей её, принимает исходную форму. У упругости есть предел. Он достигается, когда при изгибе деревянная детальили изделие сохранит конечную форму.Попросту говоря, предел упругости доски достигается в тот момент, когда она ломается. Свойства упругости и гибкости не идентичны. Гибкость – способность менять форму под действием внешних воздействий. Упругость – возможность возвращать утраченную форму. Дерево с высоким модулем необходимо для того, чтобы делать спортивные снаряды, мебель. Наиболее упруга древесина таких пород как ясень, бук, кария, лиственница.
Вместо термина упругость часто употребляют понятия жесткость или деформативность.
Чтобы описать способность к возвращению исходной формы, используют следующие физические величины:
В общем, можно говорить о том, что при приложении силы вдоль древесных волокон, модуль упругости в 20-25 раз выше, чем если та же сила действует поперек волокон. Если сила действует перпендикулярно направлению волокон и направлена радиально, то этот показатель на 20-50 % больше, чем при действии той же силы в тангенциальном направлении.
Ниже рассмотрим более подробно эти физические величины, определяющие способность дерева возвращать исходную форму при снятии деформирующего усилия.
Модуль упругости древесины основных пород
Модуль упругости в физике рассматривается как единое наименование комплекса физических величин, характеризующих способность твердого тела (в нашем случае – дерева) упруго деформироваться, если к нему будет приложена какая-то сила.
Модуль упругости древесины (Е) – соотношение между нормальными напряжениями и относительными деформациями. Он измеряется в Мпа либо в кГс/см 2 (1Мпа=10.197 кГс/см 2 ) Выделяют несколько видов:
Таблица. Сведения по наиболее часто используемым породам.*
Коэффициенты поперечной деформации основных пород дерева
Во время приложения нагрузки, кроме продольной деформации вдоль волокон так же появляется поперечная при изгибе.
Коэффициенты этого типа деформации приведены в таблице:
Модуль сдвига основных пород древесины
Модуль сдвига – коэффициент пропорциональности между касательными напряжениями и угловыми деформациями древесины.
Данные по модулю сдвига для основных пород приведены ниже:
Пластичность древесины
Дерево способно под давлением менять без разрушения свою форму, сохранять её после того, как давление будет снято. Такое свойство называется пластичностью. Пластичность зависит от тех же критериев, что упругость, только в обратном направлении. Например, чем выше влажность древесины, тем она более пластична, при этом менее упруга.
Пластичность дерева повышают с помощью специальной обработки. Пропаривая или проваривая его в воде, получаем более пластичный материал, которую затем используют для изготовления мебели, полозьев саней. Наивысшая пластичность у бука, вяза, ясеня, дуба. Это свойство обусловлено строением проводящей системы данных пород. У бука, например, много крупных сердцевинных лучей, изгибающих волокна древесины. Сосуды, расположенные группами в годовых слоях вяза, дуба, ясеня, сильно сдавлены более плотной поздней древесиной, поэтому пластичность этих пород высока.
Коэффициент Пуассона
При приложении нагрузки к стержню, кроме продольной деформации ε, появляется поперечная деформация ε1. Коэффициентом поперечной деформации, или коэффициентом Пуассона μ, называется отношение ε1 к ε.
Коэффициент Пуассона древесины определяют путем сжатия прямоугольных призматических образцов сечением 40х40 мм, высотой 150 мм. Чтобы измерить деформацию на образце устанавливается шесть тензометров с базой 20 мм, передаточным числом около 1000. Из этих тензометров два регистрируют продольную деформацию (деформация в направлении действия силы сжатия), остальные четыре измеряют поперечные деформации в двух взаимно перпендикулярных направлениях. Каждый из образцов шестикратно нагружают до 400 и 1600 кг при сжатии вдоль волокон, до 40 и 160 кг при сжатии поперек волокон.
Для древесины сосны, ели коэффициент Пуассона при усилии, направленном вдоль волокон v0=0,5.
Модуль упругости фанеры
Фанера – строительный материал, производимый путем склеивания нескольких слоев деревянного шпона. Она очень популяренна, и неспроста. Кроме эстетической ценности, фанера обладает рядом значений параметров, выделяющих её в ряду материалов для строительства. Проходя обработку, фанера приобретает прочность, упругость, влагостойкость.
На характеристики фанеры влияют многие факторы:
Для фанеры так же рассчитывается модуль упругости и все соответствующие коэффициенты.
Важно то, что модуль упругости фанеры и другие показатели выше, чем у древесины, из которой она была изготовлена.
Модуль упругости древесины рассчитывают обязательно перед постройкой кровельных, стропильных систем. Знание внутренних усилий, появляющихся в строительных материалах, важно для безопасности, долговечности постройки. Способность возвращать утраченную форму значимо при выборе материала рукояток ударных инструментов, оружейных лож.