Что называется угловым коэффициентом прямой
Угловой коэффициент.
Угловой коэффициент— коэффициент k в уравнении прямой на плоскости y = kx + b. Он численно равняется тангенсу угла между выбранной прямой и осью 0х. Этот угол отсчитывается от положительного направления оси 0х до прямой против хода часовой стрелки и располагается и пределах от 0 до 180 градусов.
Для обозначения углового коэффициента употребляют латинский символ k. И, основываясь на определении получаем:
Когда прямая параллельна оси 0х или совпадает с ней, то угол ее наклона расценивают, как равный нулю.
Когда прямая параллельна оси 0у, то угловой коэффициент отсутствует и принято указывать, что угловой коэффициент обращается в бесконечность.
Положительный угловой коэффициент прямой свидетельствует о росте графика функции, отрицательный угловой коэффициент – об убывании.
Угловой коэффициент прямой так же есть возможность вычислить, когда установлены координаты двух произвольных точек прямой:
Тогда, в образовавшемся прямоугольном треугольнике M1РM2 вычисляем тангенс:
Линейная функция
Линейная функция — функция вида График линейной функции — прямая.
Для построения графика линейной функции достаточно двух точек — потому что через две несовпадающие точки всегда можно провести прямую, причем единственную.
Угловой коэффициент прямой
Величина k в формуле линейной функции называется угловым коэффициентом прямой
Угловой коэффициент k равен тангенсу угла наклона графика линейной функции к положительному направлению оси Х.
Пусть Чем больше k, тем круче вверх идет график функции.
Заметим, что прямая (также изображенная на рисунке) не является графиком функции в нашем обычном, школьном смысле слова. В самом деле — мы помним, что функция — это соответствие между двумя множествами, причем каждому элементу множества Х соответствует один и только один элемент множества Y.
Для прямой это не выполняется: значению соответствует бесконечно много значений у.
Если прямые параллельны.
При этом, чем больше b, тем выше расположен на координатной плоскости график функции.
Например, прямые и параллельны. Их угловые коэффициенты равны.
Если прямые перпендикулярны. Например, прямые и пересекаются под прямым углом. Произведение их угловых коэффициентов равно — 1.
Построение графика линейной функции
График линейной функции построить легко — достаточно двух точек.
Оказывается, что привычный нам вид уравнения прямой — не единственно возможный.
Уравнение прямой можно записать также в виде
Построим, например, прямую, заданную уравнением
Значит, наша прямая проходит через точки и
Зачем изучать линейную функцию?
Дело в том, что многие зависимости в природе и технике описываются формулой виде
Например, закон Ома для участка цепи: Напряжение U прямо пропорционально силе тока I.
Обратите внимание, что в формулу линейной функции аргумент х входит в первой степени. Мы просто умножаем х на угловой коэффициент k и прибавляем b.
Угловой коэффициент прямой
Угловой коэффициент прямой — коэффициент в уравнении
прямой на координатной плоскости, численно равен тангенсу угла (составляющего наименьший поворот от оси Ox к оси Оу) между положительным направлением оси абсцисс и данной прямой линией. [1]
Тангенс угла может рассчитываться как отношение противолежащего катета к прилежащему. k всегда равен , то есть производной уравнения прямой по x.
При положительных значениях углового коэффициента k и нулевом значении коэффициента сдвига b прямая будет лежать в первом и третьем квадрантах (в которых x и y одновременно положительны и отрицательны). При этом большим значениям углового коэффициента k будет соответствовать более крутая прямая, а меньшим — более пологая.
Прямые и
перпендикулярны, если
, а параллельны при
.
Примечания
Полезное
Смотреть что такое «Угловой коэффициент прямой» в других словарях:
угловой коэффициент (прямой) — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN slope … Справочник технического переводчика
Угловой коэффициент — (математическое) число k в уравнении прямой линии на плоскости у = kx+b (см. Аналитическая геометрия), характеризующее наклон прямой относительно оси абсцисс. В прямоугольной системе координат У. к. k = tg φ, где φ угол между… … Большая советская энциклопедия
Уравнения прямой — Изображение прямых в прямоугольной системе координат Прямая одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется… … Википедия
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ — раздел геометрии, который исследует простейшие геометрические объекты средствами элементарной алгебры на основе метода координат. Создание аналитической геометрии обычно приписывают Р.Декарту, изложившему ее основы в последней главе своего… … Энциклопедия Кольера
Время реакции (reaction time) — Измерение времени реакции (ВР), вероятно, самый почтенный предмет в эмпирической психологии. Оно зародилось в области астрономии, в 1823 г., с измерением индивидуальных различий в скорости восприятия пересечения звездой линии риски телескопа. Эти … Психологическая энциклопедия
МАТЕМАТИЧЕСКИЙ АНАЛИЗ — раздел математики, дающий методы количественного исследования разных процессов изменения; занимается изучением скорости изменения (дифференциальное исчисление) и определением длин кривых, площадей и объемов фигур, ограниченных кривыми контурами и … Энциклопедия Кольера
Прямая — У этого термина существуют и другие значения, см. Прямая (значения). Прямая одно из основных понятий геометрии, то есть точного универсального определения не имеет. При систематическом изложении геометрии прямая линия обычно принимается за одно… … Википедия
Прямая линия — Изображение прямых в прямоугольной системе координат Прямая одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется… … Википедия
Прямые — Изображение прямых в прямоугольной системе координат Прямая одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется… … Википедия
Малая полуось — Не следует путать с термином «Эллипсис». Эллипс и его фокусы Эллипс (др. греч. ἔλλειψις недостаток, в смысле недостатка эксцентриситета до 1) геометрическое место точек M Евклидовой плоскости, для которых сумма расстояний от двух данных точек F1… … Википедия
Уравнение прямой с угловым коэффициентом: теория, примеры, решение задач
Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.
Угол наклона прямой и угловой коэффициент прямой
Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси О х с их угловым коэффициентом. Допустим, что задана декартова система координат О х на плоскости.
Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.
Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.
Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.
Уравнение с угловым коэффициентом
Ответ: М 1 принадлежит прямой, а М 2 нет.
Уравнение прямой с угловым коэффициентом, проходящей через заданную точку
Решение
Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно
Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y = k · x + b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.
Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.
Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:
Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:
Решим задачу обратную данной.
Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:
Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:
Для решения таких заданий следует приводит параметрические уравнения прямой вида x = x 1 + a x · λ y = y 1 + a y · λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.
Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:
Уравнение прямой, виды уравнения прямой на плоскости
В прошлом материале мы рассмотрели основные моменты, касающиеся темы прямой на плоскости. Теперь же перейдем к изучению уравнения прямой: рассмотрим, какое уравнение может называться уравнением прямой, а также то, какой вид имеет уравнение прямой на плоскости.
Определение уравнения прямой на плоскости
Давайте посмотрим, какой вид будет иметь уравнение прямой на плоскости. Этому будет посвящен весь следующий раздел нашей статьи. Отметим, что существует несколько вариантов записи уравнения прямой. Объясняется это наличием нескольких способов задания прямой линии на плоскости, и также различной спецификой задач.
Общее уравнение прямой линии
Поясним некоторые важные аспекты темы.
Посмотрите на рисунок.
Все приведенные уравнения прямых, которые мы рассмотрим ниже, могут быть получены из общего уравнения прямой. Также возможен и обратный процесс, когда любое из рассматриваемых уравнений может быть приведено к общему уравнению прямой.
Разобраться во всех нюансах темы можно в статье «Общее уравнение прямой». В материале мы приводим доказательство теоремы с графическими иллюстрациями и подробным разбором примеров. Особое внимание в статье уделяется переходам от общего уравнения прямой к уравнениям других видов и обратно.
Уравнение прямой в отрезках
Дополнительно рекомендуем ознакомиться с материалом, изложенным в статье «Уравнение прямой в отрезках».
Уравнение прямой с угловым коэффициентом
Обращаем ваше внимание, что с помощью уравнения прямой с угловым коэффициентом очень удобно искать уравнение касательной к графику функции в точке.
Больше материала по теме можно найти в статье «Уравнение прямой с угловым коэффициентом». Помимо теории там размещено большое количество графических примеров и подробный разбор задач.
Каноническое уравнение прямой на плоскости
Больше материала на тему канонического уравнения прямой смотрите здесь. В статье мы приводим целый ряд решений задач, а также многочисленные примеры, которые позволяют лучше овладеть темой.
Параметрические уравнения прямой на плоскости
Обращаем ваше внимание на то, что коэффициенты a x и a y при параметре λ в данном виде уравнений представляют собой координаты направляющего вектора прямой линии.
Больше информации ищите в статье «Параметрические уравнения прямой на плоскости».
Нормальное уравнение прямой
Обращаем ваше внимание на то, что нормальное уравнение прямой на плоскости позволяет находить расстояние от точки до прямой на плоскости.