Что называется точкой отсчета в кинематике
Кинематика точки
Кинема́тика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.
Движение любого объекта в кинематике изучают по отношению к некоторой системе отсчета, включающей:
Положение точки определяется набором обобщенных координат — упорядоченным набором числовых величин, полностью описывающих положение тела. В самом простом случае это координаты точки (радиус-вектора) в выбранной системе координат. Наиболее наглядное представление о радиус-векторе можно получить в евклидовой системе координат, поскольку базис в ней является фиксированным и общим для любого положения тела.
Содержание
Кинематика поступательного движения
Основные кинематические понятия
Материальная точка — тело, размерами которого по сравнению с характерными расстояниями данной задачи можно пренебречь. Так Землю можно считать Материальной Точкой (М. Т.) при изучении её движения вокруг Солнца, пулю можно считать М. Т. при её движении в поле тяжести Земли, но нельзя считать таковой при учете её вращательного движения в стволе винтовки. При поступательном движении в ряде случаев при помощи понятия М. Т. можно описывать и изменение положения более крупных объектов. Так, например, тепловоз, проходящий расстояние 1 метр, может считаться М. Т., поскольку его ориентация относительно системы координат в процессе движения является фиксированной и не влияет на постановку и ход решения задачи.
Радиус-вектор — Вектор, определяющий положение М. Т. в пространстве: . Здесь — координаты радиус-вектора. Геометрически изображается вектором, проведенным из начала координат к материальной точке. Зависимость радиус-вектора (или его координат ) от времени называется законом движения.
Траектория — Годограф радиус-вектора, то есть — воображаемая линия, описываемая концом радиус-вектора в процессе движения. Иными словами, траектория — это линия вдоль которой движется М. Т. При этом закон движения выступает как уравнение, задающее траекторию параметрически. Длину участка траектории между начальным и конечным моментами времени часто называют пройденным расстоянием, длиной пути или вульгарно — путем и обозначают буквой S. При таком описании движения S выступает в качестве обобщенной координаты, а законы движения в этом случае записывается в виде S = S(t) и аналогичны соответствующим законам для координат. Например закон равноускоренного криволинейного движения может быть записан в виде:
,
Где : — модуль начальной скорости, а — Тангенциальное ускорение.
Основные кинематические величины
Перемещение — векторная физическая величина, равная разности радиус-векторов в конечный и начальный моменты времени:
.
Иными словами, перемещение — это приращение радиус-вектора за выбранный промежуток времени.
Средняя скорость — векторная физическая величина равная отношению вектора перемещения к промежутку времени, за который происходит это перемещение:
.
Мгновенная скорость — векторная физическая величина, равная первой производной от радиус-вектора по времени:
.
Характеризует быстроту перемещения материальной точки. Мгновенную скорость можно определить как предел средней скорости при устремлении к нулю промежутка времени, на котором она вычисляется:
.
Единица измерения скорости в системе СИ— м/с, в системе СГС — см/с. Мгновенная скорость всегда направлена по касательной к траектории.
Мгновенное ускорение — векторная физическая величина, равная второй производной от радиус-вектора по времени и, соответственно, первой производной от мгновенной скорости по времени:
.
Характеризует быстроту изменения скорости. Единица ускорения в системе СИ— м/с², в системе СГС — см/с². В случае движения в плоскости вектор ускорения можно разложить по сопутствующему базису: на вектор нормального и тангенциального ускорения:
.
Здесь — единичный вектор нормали, — единичный вектор касательной. Величина называется нормальным ускорением и характеризует скорость изменения направления движения. Нормальное ускорение выражается через мгновенную скорость и радиус кривизны траектории:
.
В случае движения по окружности нормальное ускорение называется центростремительным. Как видно из предыдущей формулы, при движении по окружности с постоянной скоростью нормальное ускорение постоянно по модулю и направлено к центру окружности.
Величина называется тангенциальным ускорением и характеризует величину изменения модуля скорости:
.
Кинематика. Система отсчета.
Любое физическое явление представляет собой последовательность событий. Для описания любого события необходимо иметь систему отсчета.
Система координат X, Y, Z, тело отсчета (материальная точка), с которым она связана, и часы для измерения времени образуют систему отсчета, относительно которой рассматривается движение тела.
Телом отсчета называют тело, по отношению к которому рассматривают изменение положения других тел в пространстве.
С телом отсчета сязывается система координат, которая представляет из себя точку отсчета. Для определения положения тела в пространстве в любой момент времени необходимо задать начало отсчета времени.
При решении каждой конкретной задачи выбирают удобную систему отсчета и удобную систему координат, а часы (идеальные) в каждой системе отсчета нужны лишь одни. Однако, тело отсчета, начало отсчета и направления координатных осей выбираются произвольно.
В отличие от геометрии, рассматривая физические явления, при произвольном построении координатной системы неявно подразумеваются два важных свойства пространства в вакууме: однородность и изотропность.
Однородность – это тождественность всех точек пространства. Это очень существенное свойство, которое позволяет пользоваться физикой. Законы физики одинаковы в разных точках Земли, как и в пределах Солнечной системы, что и позволяет помещать начало отсчета в любую удобную точку. Поворачивая координатную систему вокруг начала подразумевается, что от этого ничего не может измениться. Но это означает, что все направления, идущие от данной точки, тождественны по своим свойствам. Это и есть изотропность пространства.
Тема 1.6. Основные понятия кинематики
§1. Кинематика точки. Введение в кинематику.
Кинематикой (от греческого «кинема» — движение) называется раздел механики, в котором изучаются геометрические свойства движения тел без учета их инертности (массы) и действующих на них сил.
Основной задачей кинематики является нахождение положения тела в любой момент времени, если известны его положение, скорость и ускорение в начальный момент времени.
Для определения положения движущегося тела (или точки) в разные моменты времени с телом, по отношению к которому изучается движение, жестко связывают какую-нибудь систему координат, образующую вместе с этим телом систему отсчета.
Рис.1. Система отчета
Изображать систему отсчета будем в виде трех координатных осей (не показывая тело, с которым они связаны).
Движение тел совершается в пространстве с течением времени. Пространство в механике мы рассматриваем, как трехмерное евклидово пространство.
Время является скалярной, непрерывно изменяющейся величиной. В задачах кинематики время t принимают за независимое переменное (аргумент). Все другие переменные величины (расстояния, скорости и т. д.) рассматриваются как изменяющиеся с течением времени, т.е. как функции времени t.
Для решения задач кинематики надо, чтобы изучаемое движение было как-то задано (описано).
Основная задача кинематики точки твердого тела состоит в том, чтобы, зная закон движения точки (тела), установить методы определения всех кинематических величин, характеризующих данное движение.
Положение тела можно определить с помощью радиус-вектора или с помощью координат.
Рис.2. Радиус-вектор
Рис.3. Координаты точки М
Этой моделью пользуются в тех случаях, когда линейные размеры рассматриваемых тел много меньше всех прочих расстояний в данной задаче или когда тело движется поступательно.
Поступательным называется движение тела, при котором прямая, проходящая через любые две точки тела, перемещается, оставаясь параллельной самой себе. При поступательном движении все точки тела описывают одинаковые траектории и в любой момент времени имеют одинаковые скорости и ускорения. Поэтому для описания такого движения тела достаточно описать движение его одной произвольной точки.
В дальнейшем под словом «тело» будем понимать «материальная точка».
Линия, которую описывает движущееся тело в определенной системе отсчета, называется траекторией. Вид траектории зависит от выбора системы отсчета.
В зависимости от вида траектории различают прямолинейное и криволинейное движение.
где и — радиус-векторы тела в эти моменты времени.Единицы измерения в системе СИ: м (метр).
Модуль перемещения не может быть больше пути: ≤s.
Знак равенства относится к случаю прямолинейного движения, если направление движения не изменяется.
Зная перемещение и начальное положение тела, можно найти его положение в момент времени t:
Видео-урок «Механическое движение»
§2. Способы задания движения точки
Для задания движения точки можно применять один из следующих трех способов:
1) векторный, 2) координатный, 3) естественный.
1. Векторный способ задания движения точки.
Рис.4. Движение точки М
При движении точки М вектор будет с течением времени изменяться и по модулю, и по направлению. Следовательно, является переменным вектором (вектором-функцией), зависящим от аргумента t:
Равенство определяет закон движения точки в векторной форме, так как оно позволяет в любой момент времени построить соответствующий вектор и найти положение движущейся точки.
2. Координатный способ задания движения точки.
Положение точки можно непосредственно определять ее декартовыми координатами х, у, z (рис.4), которые при движении точки будут с течением времени изменяться. Чтобы знать закон движения точки, т.е. ее положение в пространстве в любой момент времени, надо знать значения координат точки для каждого момента времени, т.е. знать зависимости
Уравнения представляют собой уравнения движения точки в прямоугольных декартовых координатах. Они определяют закон движения точки при координатном способе задания движения.
3. Естественный способ задания движения точки.
Рис.5. Движение точки М
Естественным способом задания движения удобно пользоваться в тех случаях, когда траектория движущейся точки известна заранее. Пусть кривая АВ является траекторией точки М при ее движении относительно системы отсчета Oxyz (рис.5) Выберем на этой траектории какую-нибудь неподвижную точку О’, которую примем за начало отсчета, и установим на траектории положительное и отрицательное направления отсчета (как на координатной оси).
Чтобы знать положение точки М на траектории в любой момент времени, надо знать зависимость s=f(t).
§3. Вектор скорости точки
Одной из основных кинематических характеристик движения точки является векторная величина, называемая скоростью точки. Понятие скорости точки в равномерном прямолинейном движении относится к числу элементарных понятий.
Единица измерения скорости – м/с. Часто используют и другие единицы, например, км/ч: 1 км/час=1/3,6 м/с.
Движение точки называется равномерным, если приращения радиуса-вектора точки за одинаковые промежутки времени равны между собой. Если при этом траекторией точки является прямая, то движение точки называется прямолинейным.
Для равномерно-прямолинейного движения ∆r=v∆t, где v – постоянный вектор скорости.
Из соотношения видно, что скорость прямолинейного и равномерного движения является физической величиной, определяющей перемещение точки за единицу времени.
Кинематика.
Кинематика – раздел теоретической механики, в котором изучается механическое движение тел без учета их масс и причин, обеспечивающих это движение.
Иными словами, в кинематике описывается движение тела (траектория движения, скорость и ускорение) без выяснения причин, почему оно так движется.
Движением обозначают всякое изменение в окружающем материальном мире. Механическое движение – изменение положения тела в пространстве, происходящее с течением времени, наблюдаемое относительно другого тела, условно принятого за неподвижное. Условно неподвижное тело называют телом отсчета. Система координатных осей, связанная с телом отсчета, определяет пространство, в котором происходит движение.
Физическое пространство трехмерно и евклидово, т. е. все измерения осуществляются на основе школьной геометрии. Основной единицей измерения расстояний служит 1 метр (м), единицей измерения углов – 1 радиан (рад.).
Время в кинематике рассматривается в качестве непрерывно изменяющейся скалярной величины t. Все другие кинематические величины считаются зависящими от времени (функциями от времени). За основную единицу времени принимают 1 сек.
Кинематика изучает движение:
Основные задачи кинематики.
1. Описание движения тела с помощью кинематических уравнений движения, таблиц и графиков. Описать движение тела – определить его положение в любой момент времени.
2. Определение кинематических характеристик движения – скорости и ускорения.
3. Изучение сложных (составных) движений и определение зависимости между их характеристиками. Сложным движением называют движение тела относительно системы координат, которая сама движется относительно другой, неподвижной системы координат.
Кинематика рассматривает следующие понятия и движения:
Учебники
Журнал «Квант»
Общие
Основные понятия кинематики
Кинематика — раздел механики, изучающий движение тел без учета причин, вызвавших это движение.
Основной задачей кинематики является нахождение положения тела в любой момент времени, если известны его положение, скорость и ускорение в начальный момент времени.
Механическое движение — это изменение положения тел (или частей тела) относительно друг друга в пространстве с течением времени.
Для описания механического движения надо выбрать систему отсчета.
Тело отсчета — тело (или группа тел), принимаемое в данном случае за неподвижное, относительно которого рассматривается движение других тел.
Система отсчета — это система координат, связанная с телом отсчета, и выбранный способ измерения времени (рис. 1).
Положение тела можно определить с помощью радиуса-вектора \(
\vec r\) или с помощью координат.
\vec r\) точки Μ — направленный отрезок прямой, соединяющий начало отсчета О с точкой Μ (рис. 2).
Координата x точки Μ — это проекция конца радиуса-вектора точки Μ на ось Ох. Обычно пользуются прямоугольной системой ко ординат. В этом случае положение точки Μ на линии, плоскости и в пространстве определяют соответственно одним (x), двумя (х, у) и тремя (х, у, z) числами — координатами (рис. 3).
В элементарном курсе физики изучают кинематику движения материальной точки.
Материальная точка — тело, размерами которого в данных условиях можно пренебречь.
Этой моделью пользуются в тех случаях, когда линейные размеры рассматриваемых тел много меньше всех прочих расстояний в данной задаче или когда тело движется поступательно.
Поступательным называется движение тела, при котором прямая, проходящая через любые две точки тела, перемещается, оставаясь параллельной самой себе. При поступательном движении все точки тела описывают одинаковые траектории и в любой момент времени имеют одинаковые скорости и ускорения. Поэтому для описания такого движения тела достаточно описать движение его одной произвольной точки.
В дальнейшем под словом «тело» будем понимать «материальная точка».
Линия, которую описывает движущееся тело в определенной системе отсчета, называется траекторией. На практике форму траектории задают с помощью математических формул (y = f(x) — уравнение траектории) или изображают на рисунке. Вид траектории зависит от выбора системы отсчета. Например, траекторией тела, свободно падающего в вагоне, который движется равномерно и прямолинейно, является прямая вертикальная линия в системе отсчета, связанной с вагоном, и парабола в системе отсчета, связанной с Землей.
В зависимости от вида траектории различают прямолинейное и криволинейное движение.
Путь s — скалярная физическая величина, определяемая длиной траектории, описанной телом за некоторый промежуток времени. Путь всегда положителен: s > 0.
\Delta \vec r\) тела за определенный промежуток времени — направленный отрезок прямой, соединяющий начальное (точка M0) и конечное (точка М) положение тела (см. рис. 2):
\vec r_0\) — радиусы-векторы тела в эти моменты времени.
Проекция перемещения на ось Ox\[
Модуль перемещения не может быть больше пути\[
Знак равенства относится к случаю прямолинейного движения, если направление движения не изменяется.
Зная перемещение и начальное положение тела, можно найти его положение в момент времени t:
\vec r = \vec r_0 + \Delta \vec r;\) \(
Скорость — мера механического состояния тела. Она характеризует быстроту изменения положения тела относительно данной системы отсчета и является векторной физической величиной.
\mathcal h \vec \upsilon \mathcal i\) — векторная физическая величина, численно равная отношению перемещения к промежутку времени, за который оно произошло, и направленная вдоль перемещения (рис. 4):
В СИ единицей скорости является метр в секунду (м/с).
Средняя скорость, найденная по этой формуле, характеризует движение только на том участке траектории, для которого она определена. На другом участке траектории она может быть другой.
Иногда пользуются средней скоростью пути\[
\mathcal h \upsilon \mathcal i = \frac<\Delta t>\], где s — путь, пройденный за промежуток времени Δt. Средняя скорость пути — это скалярная величина.
\vec \upsilon\) тела — скорость тела в данный момент времени (или в данной точке траектории). Она равна пределу, к которому стремится средняя скорость за бесконечно малый промежуток времени \(
\vec r \ ‘\) — производная от радиуса-вектора по времени.
В проекции на ось Ох:
Мгновенная скорость тела направлена по касательной к траектории в каждой ее точке в сторону движения (см. рис. 4).
Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. Оно показывает, на какую величину изменяется скорость тела за единицу времени.
Среднее ускорение — физическая величина, численно равная отношению изменения скорости ко времени, за которое оно произошло:
\mathcal h \vec a \mathcal i\) направлен параллельно вектору изменения скорости \(
\mathcal h \vec a \mathcal i \upuparrows \Delta \vec \upsilon\)) в сторону вогнутости траектории (рис. 5).
В СИ единицей ускорения является метр на секунду в квадрате (м/с 2 ).
В общем случае мгновенное ускорение направлено под углом к скорости. Зная траекторию, можно определить направление скорости, но не ускорения. Направление ускорения определяется направлением равнодействующей сил, действующих на тело.
При прямолинейном движении с возрастающей по модулю скоростью (рис. 6, а) векторы \(
\vec \upsilon_0\) сонаправлены (\(
\vec a \upuparrows \vec \upsilon_0\)) и проекция ускорения на направление движения положительна.
При прямолинейном движении с убывающей по модулю скоростью (рис. 6, б) направления векторов \(
\vec \upsilon_0\) противоположны (\(
\vec a \uparrow \downarrow \vec \upsilon_0\)) и проекция ускорения на направление движения отрицательна.
\vec a\) при криволинейном движении можно разложить на две составляющие, направленные вдоль скорости \(
\vec a_<\tau>\) и перпендикулярно скорости \(
\vec a_<\tau>\) — тангенциальное ускорение, характеризующее быстроту изменения модуля скорости при криволинейном движении, \(
\vec a_n\) — нормальное ускорение, характеризующее быстроту изменения направления вектора скорости при криволинейном движении Модуль ускорения \(