Что называется тканями анатомия
Что называется тканями анатомия
Строение и биологическая роль тканей человеческого организма:
Каждая ткань характеризуется развитием в онтогенезе из определенного эмбрионального зачатка и типичными для нее взаимоотношениями с другими тканями и положением в организме (Н.А. Шевченко)
Эпителиальная ткань:
Эпителий отделяет организм от внешней среды, но одновременно служит посредником при взаимодействии организма с окружающей средой. Клетки эпителия плотно соединены друг с другом и образуют механический барьер, препятствующий проникновению микроорганизмов и чужеродных веществ внутрь организма. Клетки эпителиальной ткани живут непродолжительное время и быстро заменяются новыми (этот процесс именуется регенерацией).
Эпителиальная ткань участвует и во многих других функциях: секреции (железы внешней и внутренней секреции), всасывании (кишечный эпителий), газообмене (эпителий легких).
Главной особенностью Эпителия является то, что он состоит из непрерывного слоя плотно прилегающих клеток. Эпителий может быть в виде пласта из клеток, выстилающих все поверхности организма, и в виде крупных скоплений клеток – желез: печень, поджелудочная, щитовидная, слюнные железы и др. В первом случае он лежит на базальной мембране, которая отделяет эпителий от подлежащей соединительной ткани. Однако существуют исключения: эпителиальные клетки в лимфатической ткани чередуются с элементами соединительной ткани, такой эпителий называется атипическим.
Эпителиальные клетки, располагающиеся пластом, могут лежать во много слоев (многослойный эпителий) или в один слой (однослойный эпителий). По высоте клеток различают эпителии плоский, кубический, призматический, цилиндрический.
Соединительная ткань состоит из клеток, межклеточного вещества и соединительнотканных волокон. Из нее состоят кости, хрящи, сухожилия, связки, кровь, жир, она есть во всех органах (рыхлая соединительная ткань) в виде так называемой стромы (каркаса) органов.
В противоположность эпителиальной ткани во всех типах соединительной ткани (кроме жировой) межклеточное вещество преобладает над клетками по объему, т. е. межклеточное вещество очень хорошо выражено. Химический состав и физические свойства межклеточного вещества очень разнообразны в различных типах соединительной ткани. Например, кровь – клетки в ней «плавают» и передвигаются свободно, поскольку межклеточное вещество хорошо развито.
В целом, соединительная ткань составляет то, что называют внутренней средой организма. Она очень разнообразна и представлена различными видами – от плотных и рыхлых форм до крови и лимфы, клетки которых находятся в жидкости. Принципиальные различия типов соединительной ткани определяются соотношениями клеточных компонентов и характером межклеточного вещества.
В плотной волокнистой соединительной ткани (сухожилия мышц, связки суставов) преобладают волокнистые структуры, она испытывает существенные механические нагрузки.
Рыхлая волокнистая соединительная ткань чрезвычайно распространена в организме. Она очень богата, наоборот, клеточными формами разных типов. Одни из них участвуют в образовании волокон ткани (фибробласты), другие, что особенно важно, обеспечивают прежде всего защитные и регулирующие процессы, в том числе через иммунные механизмы (макрофаги, лимфоциты, тканевые базофилы, плазмоциты).
Костная ткань, образующая кости скелета, отличается большой прочностью. Она поддерживает форму тела (конституцию) и защищает органы, расположенные в черепной коробке, грудной и тазовой полостях, участвует в минеральном обмене. Ткань состоит из клеток (остеоцитов) и межклеточного вещества, в котором расположены питательные каналы с сосудами. В межклеточном веществе содержится до 70% минеральных солей (кальций, фосфор и магний).
В своем развитии костная ткань проходит волокнистую и пластинчатую стадии. На различных участках кости она организуется в виде компактного или губчатого костного вещества.
Хрящевая ткан ь состоит из клеток (хондроцитов) и межклеточного вещества (хрящевого матрикса), характеризующегося повышенной упругостью. Она выполняет опорную функцию, так как образует основную массу хрящей.
Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.
Нейрон – основная структурная и функциональная единица нервной ткани. Главная его особенность – способность генерировать нервные импульсы и передавать возбуждение другим нейронам или мышечным и железистым клеткам рабочих органов. Нейроны могут состоять из тела и отростков. Нервные клетки предназначены для проведения нервных импульсов. Получив информацию на одном участке поверхности, нейрон очень быстро передает ее на другой участок своей поверхности. Так как отростки нейрона очень длинные, то информация передается на большие расстояния. Большинство нейронов имеют отростки двух видов: короткие, толстые, ветвящиеся вблизи тела – дендриты и длинные (до 1.5 м), тонкие и ветвящиеся только на самом конце – аксоны. Аксоны образуют нервные волокна.
Нервный импульс – это электрическая волна, бегущая с большой скоростью по нервному волокну.
В зависимости от выполняемых функций и особенностей строения все нервные клетки подразделяются на три типа: чувствительные, двигательные (исполнительные) и вставочные. Двигательные волокна, идущие в составе нервов, передают сигналы мышцам и железам, чувствительные волокна передают информацию о состоянии органов в центральную нервную систему.
Мышечная ткань
Мышечные клетки называют мышечными волокнами, потому что они постоянно вытянуты в одном направлении.
Классификация мышечных тканей проводится на основании строения ткани (гистологически): по наличию или отсутствию поперечной исчерченности, и на основании механизма сокращения – произвольного (как в скелетной мышце) или непроизвольного (гладкая или сердечная мышцы).
Мышечная ткань обладает возбудимостью и способностью к активному сокращению под влиянием нервной системы и некоторых веществ. Микроскопические различия позволяют выделить два типа этой ткани – гладкую (неисчерченную) и поперечнополосатую (исчерченную).
Гладкая мышечная ткань имеет клеточное строение. Она образует мышечные оболочки стенок внутренних органов (кишечника, матки, мочевого пузыря и др.), кровеносных и лимфатических сосудов; сокращение ее происходит непроизвольно.
Поперечнополосатая мышечная ткань состоит из мышечных волокон, каждое из которых представлено многими тысячами клеток, слившимися, кроме их ядер, в одну структуру. Она образует скелетные мышцы. Их мы можем сокращать по своему желанию.
Разновидностью поперечнополосатой мышечной ткани является сердечная мышца, обладающая уникальными способностями. В течение жизни (около 70 лет) сердечная мышца сокращается более 2,5 млн. раз. Ни одна другая ткань не обладает таким потенциалом прочности. Сердечная мышечная ткань имеет поперечную исчерченность. Однако в отличие от скелетной мышцы здесь есть специальные участки, где мышечные волокна смыкаются. Благодаря такому строению сокращение одного волокна бысто передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы.
Ткани: анатомия, особенности строения и выполняемые функции
В организме человека присутствует более двух сотен различных видов клеток, каждая из которых уникальна. Разделить их на группы, именуемые тканями, позволяет схожее строение и происхождение, а также выполняемые функции. Ткани — это следующая после клеток иерархическая ступень анатомии человека. Они представляют собой симбиоз клеток и межклеточного пространства, структура которых позволяет выполнять возложенные на них функции, поддерживая тем самым нормальную жизнедеятельность организма.
У человека выделяют 4 вида тканей: эпителиальную, соединительную, мышечную и нервную. Каждая из них образуется в результате дифференцировки клеток в процессе формирования организма. В чём заключаются особенности анатомии тканей, как они взаимодействуют и какие функции выполняют? Анатомическая справка поможет разобраться в этих вопросах!
Анатомия ткани человека: от однородных клеток к высокодифференцированному организму
Образование тканей, поддержание их формы и выполнение общих функций — сложный процесс, запрограммированный в организме молекулами ДНК. Именно благодаря генетической информации клетки способны к дифференцировке — биохимическому процессу, в результате которого изначально однородные единицы приобретают специфические особенности, позволяющие им впоследствии выполнять определённые функции. Благодаря этому процессу в организме появляются 4 вида тканей со схожей анатомией и физиологией.
Примечательно, что после дифференцировки клетки тканей сохраняют присущие им особенности даже в новой среде. Чтобы это доказать, в 1952 году специалисты Чикагского университета провели наглядное исследование, разделив клетки куриного эмбриона и культивировав их в специальных ферментах. В результате этого опыта образовались новые колонии, но при этом реакции и «поведение» клеток в новой структурной среде были типичными для конкретного вида ткани, из которой они изначально произошли.
Чтобы понять, как взаимодействуют клетки в человеческом организме, рассмотрим анатомию тканей более подробно.
Эпителий
Эпителиальная ткань образует наружные покровы организма — кожу и слизистые оболочки, выстилает внутренние полости органов и участвует в формировании желёз. Эпителиальные клетки плотно прилегают друг к другу, сплетаясь в единую прочную структуру. Между ними практически не присутствует межклеточное вещество. Такое строение позволяет эпителию справляться с возложенными на него функциями, среди которых:
Благодаря особой структуре эпителиальные ткани способны к быстрой регенерации. Даже при серьёзном повреждении они постепенно восстанавливаются, образуя колонии новых клеток в травмированных местах.
Особенности анатомии эпителиальной ткани позволяют разделить её на два подвида:
Кроме того, эпителий классифицируется по типу клеток, присутствующих в его составе. Исходя из этого критерия, выделяют кубический, плоский, ресничный, цилиндрический и другие подтипы.
Соединительная ткань
Название этого типа тканей отражает её суть и функциональные особенности. Соединительная ткань включает разнообразные клеточные структуры и большое количество межклеточного вещества, состоящего из аморфной массы, коллагеновых, белковых и эластиновых волокон. Такое строение позволяет ей заполнять все имеющиеся промежутки между функциональными единицами организма — органами и другими тканями. Также она может выполнять питательную, защитную, опорную, пластическую, транспортную и другие функции в зависимости от расположения.
Соединительной тканью представлено более 50 % от общей массы человека. В зависимости от анатомического расположения её классифицируют на следующие виды:
Плотная волокнистая ткань содержит высокий процент коллагена и эластина, благодаря чему способна сохранять текущую форму. Из неё образуются сухожилия, связки, фасции мышечных волокон и надкостница (поверхностный слой костей). Рыхлая ткань, напротив, включает высокий процент аморфного вещества, поэтому способна заполнять собой любое необходимое пространство. Совместно с плотной тканью она формирует дерму кожи и оболочку кровеносных сосудов.
Ретикулярная ткань похожа на своеобразную сеть из отростчатых клеток и волокон. Она занимает ключевое место в процессах кроветворения и совместно с плотной и рыхлой соединительной тканью образует печень, красный костный мозг, селезёнку и лимфатические узлы.
Жировая ткань также относится к соединительной. Адипоциты — жировые клетки — выстилают внутренние органы, обеспечивая дополнительную амортизацию между ними. Кроме того, жировая ткань присутствует в подкожной клетчатке и выполняет депонирующую функцию, сохраняя жиры для последующего расщепления в условиях дефицита энергетических ресурсов.
Скелетные образования, представленные соединительной тканью, образуют костные и хрящевые структуры. Костная ткань более плотная, поскольку её межклеточное вещество содержит до 70 % минеральных солей. Благодаря этому кости скелета отличаются высокой прочностью и устойчивостью. Хрящевая ткань более гибкая, поскольку в её составе превалируют эластиновые и коллагеновые волокна. Из неё образуются суставные поверхности, кольца, поддерживающие форму дыхательных путей, ушная раковина и другие хрящи человеческого организма.
Мышечная ткань
К группе мышц относятся волокна, способные реагировать на возбуждение, сокращаться и расслабляться в зависимости от обстоятельств. Каждая отдельная группа мышц имеет определённую, чаще вытянутую, форму и отделена от других специальной сумкой — фасцией. Благодаря их ритмичному последовательному сокращению тело человека способно принимать любую допустимую позу и передвигаться в пространстве. Кроме того, мышечная ткань обеспечивает сокращение стенок некоторых внутренних органов, включая сердце, тем самым поддерживая выполнение многих жизненно важных функций.
Как и другие виды тканей, мышечная имеет свою классификацию:
Нервная ткань
Нервные волокна являются связующим звеном между различными частями организма и окружающей средой, благодаря чему вся анатомическая система работает слаженно и синхронно. Они способны реагировать на возбуждение и проводить нервные импульсы за считанные доли секунд, обеспечивая молниеносную реакцию человека на изменения, происходящие внутри него или действующие извне.
Отдельные клетки нервной системы (нейроны) сплетаются в единую сеть, распространяющуюся на весь организм, посредством отростков двух типов — дендритов и аксонов. Дендриты принимают нервный импульс и передают его к телу нейрона, а аксоны, наоборот, испускают его другим клеткам. Этот процесс происходит мгновенно, благодаря чему возникший импульс быстро достигает конечной цели.
В зависимости от влияния, которое оказывают нейроны на конечную цель, они делятся на несколько видов:
Небольшие щелевидные промежутки между нейронами заполняет нейроглия — межклеточное вещество нервной ткани. Она выполняет питательную, защитную и изоляционную функцию по отношению к структурным единицам ткани.
Так ли важна анатомия ткани?
Несмотря на кажущееся однообразие, ткани человеческого организма имеют свои особенности, формирующиеся ещё в процессе эмбриогенеза. От того, насколько полноценно каждая из них будет выполнять возложенные функции, зависит результат их сбалансированного взаимодействия — полноценная жизнедеятельность организма. Более подробное изучение анатомии тканей позволяет понять, как органы и системы взаимодействуют друг с другом, на чём базируется их работоспособность и как добиться самого важного момента — поддержания их здоровья и функциональности.
5.1.1. Анатомия и физиология человека. Ткани
Анатомия – частная биологическая наука, изучающая строение человеческого тела, его частей, органов и систем органов. Анатомия изучается параллельно с физиологией, наукой о функциях организма. Наука, изучающая условия нормальной жизнедеятельности, человеческого организма называется гигиеной.
Целостность многоклеточного организма обеспечивается:
— структурным соединением всех частей организма (клеток, тканей, органов и др.),
— взаимосвязью всех частей организма при помощи жидкостей, циркулирующих в его сосудах, полостях и пространствах (гуморальная связь), а также нервной системы, которая регулирует все процессы организма (нервная связь).
Определяющим (детерминирующим) началом организма является генотип, а регулирующими системами — нервная и эндокринная.
Понятие целостности организма человека включает в себя единство психического и соматического. Она является функцией головного мозга, представляющего наиболее высокоразвитую и особым образом организованную материю, способную мыслить.
ТКАНИ состоят из клеток и неклеточных образований (межклеточное вещество), однородных по происхождению, строению и функции.
Ткань –
это эволюционно сложившаяся система клеток и межклеточного вещества, обладающая общностью строения, развития и выполняющая определенные функции.
Ткани, образующие организм человека.
Все разнообразие тканей организма человека и животных может быть сведено к четырем типам:
эпителиальные, или пограничные, ткани;
соединительные, или ткани внутренней среды организма;
мышечные, сократимые ткани
ткани нервной системы.
Эпителиальная ткань —
пограничная ткань, покрывающая организм снаружи, выстилающая внутренние полости и органы, входящая в состав печени, легких, желез.
Клетки эпителиальной ткани располагаются в виде пласта.
полярность – различение верхней части клетки (апикальной) и нижней (базальной)
обладают высокой способностью к регенерации
нет кровеносных сосудов, питание осуществляется диффузно через базальную пластинку, состоящую из коллагеновых волокон нижележащих тканей.
Однослойный плоский эпителий.
Кубический эпителий.
Цилиндрический эпителий.
Однослойный мерцательный эпителий.
• Однорядный эпителий (ядра всех клеток расположены на одном уровне).
• Многорядный эпителий (ядра всех клеток расположены на разных уровнях).
• Многослойный эпителий (не все клетки касаются базальной мембраны).
Классификация эпителия по локализации в организме и функциям:
• Покровный эпителий (эпителий кожи).
• Эпителий паренхимы внутренних органов (эпителий легкого, печени).
•Железистый эпителий (эпителий желез, секретирующих различные вещества).
• Эпителий слизистых оболочек (выстилает полые органы, покрытые слизью, например, всасывающий эпителий кишечника).
•Эпителий серозных оболочек (выстилает стенки полостей тела, например, перикардиальной, брюшной, плевральной).
Функции эпителиальной ткани:
Ткани внутренней среды:
Особенность организации соединительной ткани:
наличие, наряду с клеточными элементами, большого количества межклеточного вещества, представленного основным веществом и волокнистыми структурами (образованы фибриллярными белками — коллагеном, эластином и др.).
Соединительная ткань классифицируется на:
1.Собственно соединительная ткань формирует прослойки внутренних органов, подкожную клетчатку, связки, сухожилия и др.:
соединительная ткань с особыми свойствами, к которой относятся ретикулярная, пигментная, жировая и слизистая ткани.
Волокнистая ткань представлена рыхлой неоформленной соединительной тканью, сопровождающей кровеносные сосуды, протоки, нервы, отделяющей органы друг от друга и от полостей тела, образующей при этом строму органов, а также плотной оформленной и неоформленной соединительной тканью, образующей связки, сухожилия, фасции, фиброзные перепонки и эластическую ткань.
2.Хрящевая ткань образована клетками хондроцитами и межклеточным веществом повышенной плотности. Хрящи выполняют опорную функцию и входят в состав различных частей скелета. Хрящевая ткань образует следующие виды хряща:
• гиалиновый хрящ (локализован на суставных поверхностях костей, концов ребер, трахеи, бронхов);
• волокнистый хрящ (локализован в межпозвоночных дисках);
• эластический хрящ (входит в состав надгортанника, ушных раковин).
3.Костная ткань формирует различные кости скелета, прочность которых обусловлена отложением в них нерастворимых кальциевых солей (участвует в минеральном обмене организма). Определяет форму тела.
коллагеновые волокна кости
костное основное вещество, где откладываются минеральные соли, составляющие до 70% от общей массы кости. Благодаря такому количеству солей костное основное вещество характеризуется повышенной прочностью.
Грубоволокнистая (ретикулофиброзная) – характерна для зародышей и молодых организмов
Пластинчатая – составляет кости скелета
А. губчатая – в эпифизах костей
Б. компактная – в диафизах трубчатых костей
Функции соединительной ткани:
• защитная (предохраняет органы от повреждений, вирусов, микроорганизмов);
Мышечная ткань:
свойства ее клеток – возбудимость, сократимость, проводимость.
Гладкая мышечная ткань:
образует мускулатуру внутренних органов,
входит в состав стенок кровеносных и лимфатических сосудов.
Гладкомышечные клетки имеют веретенообразную форму, содержат одно ядро и не имеют поперечной исчерченности.
Гладкие мышцы иннервируются вегетативной нервной системой и осуществляют относительно медленные движения и тонические сокращения.
Поперечно-полосатая мышечная ткань формирует скелетную мускулатуру, а также мышцы языка, глотки, начальной части пищевода. Структурно-функциональной единицей поперечно-полосатой мышечной ткани является мышечное волокно — длинная многоядерная клетка с поперечной исчерченностью, обусловленной определенным составом и расположением мышечных белков (актин, миозин и др.), участвующих в мышечном сокращении.
Скелетные мышцы содержат множество независимо сокращающихся волокон. Поперечно-полосатые мышцы сокращаются в ответ на импульсы, приходящие от двигательных нейронов спинного и головного мозга.
Сердечная мышечная ткань (миокард) сочетает свойства гладкой и поперечно-полосатой мышечной тканей:
не поддается произвольному управлению
Клетки сердечной мышцы соединены друг с другом с помощью особых отростков (вставочных дисков) с образованием единой структурно-функциональной единицы, отвечающей на раздражение одновременной сократительной реакцией всех мышечных элементов.
Функции мышечной ткани:
• перемещение тела в пространстве;
• смещение и фиксация частей тела;
• изменение объема полости тела, просвета сосуда, движение кожи;
Нервная ткань формирует головной и спинной мозг, нервные ганглии и волокна. Клетками нервной ткани являются нейроны и глиальные клетки.
Нейрон – основная функциональная единица нервной системы:
2 типа отростков – дендриты и аксоны с концевыми пластинками.
Дендриты (обычно нейрон имеет несколько дендритов) — короткие, толстые, сильно ветвящиеся отростки, проводящие нервные импульсы (возбуждение) к телу нервной клетки.
Аксон — один, длинный (до 1,5 м в длину) неветвяшийся отросток нервной клетки, проводящий нервный импульс от тела клетки к ее концевому отделу (к периферии).
Нервные клетки соединяются друг с другом посредством синапсов. Синапс — место контакта двух нейронов, где происходит передача нервного импульса от одной клетки к другой. Различают химические и электрические синапсы в зависимости от механизма передачи нервного импульса. Синапс состоит из:
В пресинаптической области нейрона содержатся везикулы с нейромедиатором — веществом, высвобождающимся в синаптическую щель при поступлении нервного импульса в клетку и воздействующим на постсинаптическую мембрану, вызывая изменение ее проницаемости, и, как следствие, мембранного потенциала.
По характеру воздействия нейромедиатора различают возбудительные и тормозные синапсы.
В зависимости от типов нервных отростков, участвующих в формировании синапса, наиболее часто встречаются синапсы:
• аксодендритические — аксон образует синапс на дендрите;
• аксосоматические — аксон образует синапс на теле клетки.
По положению в рефлекторной дуге и функционально выделяют группы нейронов:
• Рецепторные нейроны (афферентные) ответственны за восприятие информации извне.
• Вставочные нейроны (ассоциативные) — являются посредниками передачи информации между рецепторными и двигательными нейронами.
• Двигательные нейроны (эфферентные или мотонейроны) ответственны за передачу импульса на исполнительный рабочий орган.
Клетки глии различаются по форме, расположению в нервной ткани. Они могут формировать плотные миелиновые оболочки вокруг аксонов, изолируя нервное волокно и способствуя тем самым значительному увеличению скорости передачи нервного импульса.
Так, глия выполняет следующие вспомогательные функции:
Функции нервной ткани:
• получение, переработка, хранение, передача информации, поступающей из внешней среды и внутренних органов
• регуляция и согласование деятельности всех систем организма.
Различные ткани сочетаются между собой и образуют органы.
Орган занимает постоянное положение в организме, частью которого он является; у него определенные строение, форма и функции. Органы находятся в тесном взаимодействии. В их форме и величине наблюдаются индивидуальные, половые и возрастные различия.
Органы, объединенные обшей функцией и происхождением, составляют систему органов.
Органы, посредством которых организм воспринимает пищевые вещества и кислород, необходимый для тканевого дыхания, окислительно-восстановительных процессов, составляют пищеварительную и дыхательную системы, а органы, выделяющие наружу отработанные вещества,— мочевыделительную систему. Системы органов, которые объединяются для выполнения совместной функции, называют аппаратом (например, опорно-двигательный аппарат включает костную систему, соединения костей и мышечную систему).
Временную комбинацию разнородных органов, объединяющихся в данный момент для выполнения общей функции, называют функциональной системой.
Таким образом, можно выделить следующие иерархические уровни строения организма:
клетки и их производные
ткани (эпителиальные, внутренней среды, мышечная, нервная)
морфофункциональные единицы органов
аппараты (опорно-двигательный, мочеполовой, эндокринный, сенсорный)
системы органов (мышечная, костная, мочевая, половая, пищеварительная, дыхательная, сердечно-сосудистая, кровеносная, иммунная, нервная, органы чувств)
Из тканей формируются органы, причем одна из тканей органа является доминирующей. Органы, сходные по своему строению, функциям и развитию объединяются в системы органов: опорно-двигательную, пищеварительную, кровеносную, лимфатическую, дыхательную, выделительную, нервную, систему органов чувств, эндокринную, половую. Системы органов анатомически и функционально связаны в организм. Организм способен к саморегуляции. Это обеспечивает его устойчивость к влиянию внешней среды. Все функции организма контролируются нейрогуморальным путем, т.е. объединением нервной и гуморальной регуляции.
Тематические задания
А1. Эпителиальная ткань образует
1) слизистую оболочку кишечника
3) подкожную жировую клетчатку
А2. Соединительную ткань от эпителиальной можно отличить по
1) количеству ядер в клетках
2) количеству межклеточного вещества
3) форме и размерам клеток
4) поперечной исчерченности
А3. К соединительной ткани относятся
1) верхние, слущивающиеся клетки кожи
2) клетки серого вещества мозга
3) клетки образующие роговицу глаза
4) клетки крови, хрящи
А4. Одноядерные, веретенообразные клетки с сократительными волокнами относятся к
1) поперечно-полосатой мускулатуре
2) гладкой мускулатуре
3) костной соединительной ткани
4) волокнистой соединительной ткани
А5. Основными свойствами нервной ткани являются
1) сократимость и проводимость
2) возбудимость и сократимость
3) возбудимость и проводимость
4) сократимость и раздражимость
А6. Гладкой мышечной тканью образованы
1) желудочки сердца
3) мимические мышцы
4) мышцы глазного яблока
А7. Двуглавая мышца плеча состоит преимущественно из
1) гладкой мускулатуры
2) хрящевой соединительной ткани
3) поперечно-полосатой мускулатуры
4) волокнистой соединительной ткани
А8. Медленно и непроизвольно сокращаются, мало утомляются
1) нервные окончания
А10. Наибольшее количество АТФ содержится в клетках
3) межпозвоночных дисков
В1. Выберите признаки соединительной ткани
2) хорошо развито межклеточное вещество
3) некоторые клетки ткани способны к фагоцитозу
4) сокращаются в ответ на раздражение
5) ткань может быть образована хрящами, волокнами