Что называется суммой матриц

Математика для чайников. Матрицы и основные действия над ними

Что называется суммой матриц

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A, матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n, где m – количество строк, а n – количество столбцов.

Что называется суммой матриц

Что можно делать с матрицами? Складывать/вычитать, умножать на число, умножать между собой, транспонировать. Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы. Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Что называется суммой матриц

Вычитание выполняется по аналогии, только с противоположным знаком.

Умножение матрицы на число

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Что называется суммой матриц

Операция умножения матриц

Что называется суммой матриц

И пример с реальными числами. Умножим матрицы:

Что называется суммой матриц

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Что называется суммой матриц

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Источник

Что такое матрица: как складывать и умножать матрицы, чтобы не запутаться

Что называется суммой матриц

Представьте: сидите на паре, погрязнув в огромных формулах, нить рассуждений потеряна, и вы уже не понимаете, о чем идет речь. Знакомое ощущение? Вот именно. Чтобы вы не упускали самую суть вещей, мы подготовили объяснение некоторых непростых тем простыми словами.

А чтобы вообще всегда были в курсе событий, подписывайтесь на наш телеграм-канал.

Что такое матрицы

Сегодня поговорим о матрицах. Пройти через эту тему предстоит, наверное, всем студентам, изучающим высшую математику (линейную алгебру, точнее говоря).

Именно с матриц начинается большинство курсов высшей математики. И пусть вас не пугает слово высшая. На самом деле, все не так страшно. Смотрите сами.

Матрица – это таблица. Таблица чисел, или букв, за которыми скрываются числа.

Матрицы могут быть разного размера: квадратные, прямоугольные, есть матрицы, состоящие всего из одной строки или одного столбца (горизонтальные и вертикальные).

Что называется суммой матриц

Размер матрицы определяется количеством строк m и столбцов n. Номера строк и столбцов – буквами i и j соответственно.

А теперь, что еще нужно в первую очередь знать о работе с матрицами.

Как складывать матрицы

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера.

Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы. Приведем пример.

Что называется суммой матриц

Вычитание выполняется по аналогии, только вместо плюса пишем минус.

Как умножать матрицы

Во-первых, запомните: матрицу А можно умножить на матрицу B, только если если число столбцов матрицы А равно числу строк матрицы В.

При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м.

Что называется суммой матриц

Вместо букв в матрице могут стоять реальные числа. Вот что получится, если умножить такие матрицы:

Что называется суммой матриц

Можно и просто умножить матрицу на число. Для этого каждый ее элемент умножается на это число.

Что такое транспонированная матрица

Транспонировать матрицу – значит поменять строки и столбцы местами.

Вот как будет выглядеть матрица из самого первого примера, если ее транспонировать. Сама операция транспонирования обозначается индексом Т.

Что называется суммой матриц

Что такое детерминант матрицы

Детерминант – это определитель – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.

Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для матрицы 3×3 значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко. А если часто, то с этим справятся специалисты студенческого сервиса. Обращайтесь, они помогут!

Что называется суммой матриц

Анастасия Бабина. В моей фамилии часто ставят ударение на «И», но я привыкла. Копирайтер и редактор компании Zaochnik. Любительница мистических триллеров, отчаянный киноман и гурман в хорошей форме.

Источник

Сложение и вычитание матриц

Формула

Более подробно формула сложения двух матриц выглядит так:

В формуле складываются матрицы 3 на 3, значит и получиться должна матрица 3 на 3.

Запишем подробную формулу вычитания двух матриц:

Стоит так же заметить, что нельзя складывать и вычитать матрицы с обычными числами, а так же с другими какими-то элементами

Будет полезно знать для дальнейших решений задач с матрицами знать свойства сложения (вычитания).

Свойства

Примеры решений

Выполнить сложение матриц, а затем вычитание.

Аналогично сумме находим разность матриц с помощью замены знака «плюс» на «минус»:

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Найти сумму и разность матриц.

Как обычно сначала проверяем матрицы на одинаковую размерность.

Видим, что размерности двух матриц не совпадают, поэтому по определению суммы и разности матриц операции провести не возможно! На этом заканчиваем решение данного примера и записываем ответ.

ОтветДанные матрицы нельзя складывать и вычитать из-за разного размера

В статье: «Сложение и вычитание матриц» были даны определения, правила, замечания, свойства операций и практические примеры решения.

Источник

Решение матриц методы решений и примеров для чайников, формулы вычислений и действий с матрицами

В высшей математике существует понятие матрицы системы чисел. С комбинацией элементов, заключённых в таблице, выполняют различные операции. Прежде чем переходить к решению матриц сложными методами, следует ознакомиться с понятием этого выражения и простейшими логическими операциями над ним.

Что называется суммой матриц

Понятие выражения

Определение гласит, что матрица — это прямоугольная таблица с заключёнными в ней числами. Её название обозначается латинскими прописными буквами (А, В). Таблицы бывают разной размерности — прямоугольной, квадратной, а также в виде строк и столбцов.

От количества строк и столбцов будет зависеть величина таблицы. Матрица размера m*n означает, что в таблице содержится m строк и n столбцов. Допустим, первая строка включает элементы а11, а12, а13, вторая — а21, а22, а23. Тогда элементы, где i = j (а11, а22) образовывают диагональ и называются диагональными.

Различают комплексные матрицы, у которых хотя бы один элемент равен комплексному числу, и действительные, когда все её элементы являются действительными числами. В математике комплексные числа представлены в виде a+b*i, где:

На приведенном примере показаны варианты.

Что называется суммой матриц

Простейшие действия с матрицами могут быть разными. К их числу относятся:

Сложение и вычитание

Действия по сложению возможны только тогда, когда матрицы одинакового порядка равны между собой. В итоге получится новое матричное выражение такой же размерности. Сложение и вычитание выполняются по общей схеме — над соответствующими элементами таблиц проводят необходимые операции. Например, нужно сложить две матрицы А и В размерности 2*2.

Что называется суммой матриц

Каждый элемент первой строки складывается по порядку с показателями верхней строчки второй матрицы. По аналогии производится вычитание, только вместо плюса ставится минус.

Что называется суммой матриц

Умножение на число

Любую таблицу чисел можно умножить на число. Тогда каждый её элемент перемножается с этим показателем. К примеру, умножим матричное выражение на 2:

Что называется суммой матриц

Операция перемножения

Матрицы подлежат перемножению одна на другую, когда количество столбцов первой таблицы равно числу строк второй. Каждый элемент Aij будет равняться сумме произведений элементов i-строки первой таблицы, перемноженных на числа в j-столбце второй. Способ произведения наглядно представлен на примере.

Что называется суммой матриц

Возведение в степень

Формулу возведения в степень применяют только для квадратных матричных выражений. При этом степень должна быть натуральной. Формула возведения следующая:

Что называется суммой матриц

Иначе, чтобы выполнить операцию возведения таблицы чисел в степень n, требуется умножить её на себя саму n раз. Для операции возведения в степень удобно применять свойство в соответствии с формулой:

Что называется суммой матриц

Решение представлено на примере. 1 этап: необходимо возвести в степень, где n = 2.

Что называется суммой матриц

2 этап: сначала возводят в степень n =2. Согласно формуле перемножают таблицу чисел саму на себя n = 2 раз.

Что называется суммой матриц

3 этап: в итоге получаем:

Что называется суммой матриц

Расчёт определителя

В линейной алгебре существует понятие определителя или детерминанта. Это число, которое ставят в соответствие каждой квадратной матрице, вычисленное из её элементов по специальной формуле. Определитель или модуль используется для решения большинства задач. Детерминант самой простой матрицы определяется с помощью вычитания перемноженных элементов из побочной диагонали и главной.

Определителем матрицы А n-энного порядка называется число, которое получают из алгебраической суммы n! слагаемых, попадающих под определённые критерии. Эти слагаемые являются произведением n-элементов, взятых единично из всех столбов и строк.

Произведения могут отличаться друг от друга составом элементов. Со знаком плюс будут включаться в сумму числа, если их индексы составляют чётную подстановку, в противоположном случае их значение меняется на минус. Определитель обозначается символом det A. Круглые скобки матричной таблицы, обрамляющие её элементы, заменяются на квадратные. Формула определителя:

Что называется суммой матриц

Определитель первого порядка, состоящий из одного элемента, равен самому этому элементу. Детерминант матричной таблицы размером 2*2 второго порядка вычисляется путём перемножения её элементов, расположенных на главной диагонали, и вычитания из них произведения элементов, находящихся в побочной диагонали. Наглядный пример:

Что называется суммой матриц

Для матрицы также можно найти дискриминант многочлена, отвечающий формуле:

Что называется суммой матриц

Когда у многочлена имеются кратные корни, тогда дискриминант равен нулю.

Обратная матрица

Прежде чем переходить к понятию обратного выражения матрицы, следует рассмотреть алгоритм её транспонирования. Во время операции строки и столбцы переставляются местами. На рисунке представлен метод решения:

Что называется суммой матриц

По аналогии обратная матрица сходна с обратными числами. Например, противоположной цифре 5 будет дробь 1/5 = 5 (-1) степени. Произведение этих чисел равно 1, выглядит оно так: 5*5 (-1) = 1. Умножение обычной матричной таблицы на обратную даст в итоге единичную: А* А (-1) = Е. Это аналог числовой единицы.

Но для начала нужно понять алгоритм вычисления обратной матрицы. Для этого находят её определитель. Разработано два метода решения: с помощью элементарных преобразований или алгебраических дополнений.

Более простой способ решения — путём алгебраических дополнений. Рассмотрим матричную таблицу А, обратная ей А (-1) степени находится по формуле:

Что называется суммой матриц

Матрица обратного вида возможна только для квадратного размера таблиц 2*2, 3*3 и т. д. Обозначается она надстроенным индексом (-1). Задачу легче рассмотреть на более простом примере, когда размер таблицы равен 2*2. На первом этапе выполняют действия:

Что называется суммой матриц

2 этап: рассчитывают матрицу миноров, которая имеет те же значения, что и первоначальная. Под минором k-того порядка понимается определитель квадратной матрицы порядка k*k, составленный из её элементов, которые располагаются в выбранных k- столбцах и k-строках.

При этом расположение элементов таблицы не меняется. Чтобы найти минор верхнего левого числа, вычёркивают строчку и столбец, в которых прописан этот элемент. Оставшееся число и будет являться минором. На выходе должна получиться таблица:

Что называется суммой матриц

Что называется суммой матриц

3 этап: находят алгебраические дополнения.

Что называется суммой матриц

4 этап: определяют транспонированную матрицу.

Что называется суммой матриц

Что называется суммой матриц

Проверка решения: чтобы удостовериться, что обратная таблица чисел найдена верно, следует выполнить проверочную операцию.

Что называется суммой матриц

В рассматриваемом примере получается единичная матрица, когда на главной диагонали находятся единицы, при этом другие элементы равняются нулю. Это говорит о том, что решение было найдено правильно.

Нахождение собственных векторов

Определение собственного вектора и значений матричного выражения легче понять на примере. Для этого задают матричную таблицу чисел и ненулевой вектор Х, называемый собственным для А. Пример выражения:

Что называется суммой матриц

Согласно теореме собственными числами матричного выражения будут корни характеристического уравнения:

Что называется суммой матриц

Из однородной системы уравнений можно определить координаты собственного вектора Х, который соответствует значению лямбда.

Что называется суммой матриц

Метод Гаусса

Методом Гаусса называют способ преобразования системы уравнений линейного вида к упрощённой форме для дальнейшего облегчённого решения. Операции упрощения уравнений выполняют с помощью эквивалентных преобразований. К таким относят:

Чтобы понять механизм решения, следует рассмотреть линейную систему уравнений.

Что называется суммой матриц

Следует переписать эту систему в матричный вид:

Что называется суммой матриц

А будет являться таблицей коэффициентов системы, b — это правая часть ограничений, а Х — вектор переменных координат, который требуется найти. Для решения используют ранг матрицы. Под ним понимают наивысший порядок минора, который отличается от 0.

В этом примере rang (A) = p. Способ эквивалентных преобразований не изменяет ранг таблицы коэффициентов.

Метод Гаусса предназначен для приведения матричной таблицы коэффициентов А к ступенчатому или диагональному виду. Расширенная система выглядит так:

Что называется суммой матриц

Что называется суммой матриц

Что называется суммой матриц

Обращают внимание на последние строки.

Что называется суммой матриц

В этом случае система уравнений имеет решение, но когда хотя бы одно из этих чисел отличается от нуля, она несовместима. Таким образом, система совместима, если ранг таблицы А равен расширенному рангу В (А|b).

Что называется суммой матриц

Если rang А=rang (A|b), то существует множество решений, где n-p — многообразие. Из этого следует n-p неизвестных Хр+1,…Xn выбираются произвольно. Неизвестные X1, X2,…Xp вычисляют следующим образом: из последнего уравнения выражают Хр через остальные переменные, вставляя в предыдущие выражения. Затем из предпоследнего уравнения получают Хр-1 через прочие переменные и подставляют их в предыдущие выражения. Процедуру повторяют.

Найти быстро ответ и проверить себя позволяет онлайн-калькулятор. Решение матрицы методом Гаусса с помощью такого расчёта показывает подробные этапы операций. Для нахождения достаточно указать количество переменных и уравнений, отметить в полях значения чисел и нажать кнопку «Вычислить».

Способ Крамера

Метод Крамера используют для решения квадратной системы уравнений, представленной в линейном виде, где определитель основной матрицы не равен нулю. Считается, что система обладает единственным решением. Например, задана система линейных уравнений:

Что называется суммой матриц

Её необходимо заменить равноценным матричным уравнением.

Что называется суммой матриц

Что называется суммой матриц

Второй столбец вычисляют, а первый уже задан. Есть предположение, что определитель матрицы отличен от нуля. Из этого можно сделать выводы, что существует обратная матрица. Перемножив эквивалентное матричное уравнение на обратного формата матрицу, получим выражение:

Что называется суммой матриц

В итоге получают выражения:

Что называется суммой матриц

Из представленных уравнений выделяют формулы Крамера:

Что называется суммой матриц

Метод Крамера не представляет сложности. Он может быть описан следующим алгоритмом:

Проверить решение матрицы методом Крамера онлайн позволяет калькулятор автоматического расчёта. Для получения быстрого ответа в представленные поля подставляют переменные числа и их количество. Дополнительно может потребоваться указание вычислительного метода разложения по строке или столбу. Другой вариант заключается в приведении к треугольному виду.

Указывается также представление чисел в виде целого числа, обыкновенной или десятичной дроби. После введения всех предусмотренных параметров и нажатия кнопки «Вычислить» получают готовое решение.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *