Что называется сторонними силами и какое действие они выполняют в электрических цепях
Электродвижущая сила. Внутреннее сопротивление источника тока.
Сторонние силы. Для поддержания постоянной разности потенциалов на концах проводника, а значит, и тока необходимо наличие сторонних сил неэлектрической природы, с помощью которых происходит разделение электрических зарядов.
Сторонними силами называются любые силы, действующие на электрически заряженные частицы в цепи, за исключением электростатических (т. е. кулоновских).
Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах, на электростанциях, в гальванических элементах, аккумуляторах и т. д.
При замыкании цепи создается электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движутся от положительно заряженного электрода к отрицательному), а во всей остальной цепи их приводит а движение электрическое поле (см. рис. выше).
В источниках тока в процессе работы по разделению заряженных частиц происходит превращение разных видов энергии в электрическую. По типу преобразованной энергии различают следующие виды электродвижущей силы:
— электростатическая — в электрофорной машине, в которой происходит превращение механической энергии при трении в электрическую;
— фотоэлектрическая — в фотоэлементе. Здесь происходит превращение энергии света в электрическую: при освещении некоторых веществ, например, селена, оксида меди (I), кремния наблюдается потеря отрицательного электрического заряда;
— химическая — в гальванических элементах, аккумуляторах и др. источниках, в которых происходит превращение химической энергии в электрическую.
Электродвижущая сила (ЭДС) — характеристика источников тока. Понятие ЭДС было введено Г. Омом в 1827 г. для цепей постоянного тока. В 1857 г. Кирхгофф определил ЭДС как работу сторонних сил при переносе единичного электрического заряда вдоль замкнутого контура:
где ɛ — ЭДС источника тока, Аст — работа сторонних сил, q — количество перемещенного заряда.
Электродвижущую силу выражают в вольтах.
Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всем контуре, а только на данном участке.
Пусть имеется простая замкнутая цепь, состоящая из источника тока (например, гальванического элемента, аккумулятора или генератора) и резистора с сопротивлением R. Ток в замкнутой цепи не прерывается нигде, следовательно, oн существует и внутри источника тока. Любой источник представляет собой некоторое сопротивление дли тока. Оно называется внутренним сопротивлением источника тока и обозначается буквой r.
В генераторе r — это сопротивление обмотки, в гальваническом элементе — сопротивление раствора электролита и электродов.
Таким образом, источник тока характеризуется величинами ЭДС и внутреннего сопротивлении, которые определяют его качество. Например, электростатические машины имеют очень большую ЭДС (до десятков тысяч вольт), но при этом их внутреннее сопротивление огромно (до сотни Мом). Поэтому они непригодны для получения сильных токов. У гальванических элементов ЭДС всего лишь приблизительно 1 В, но зато и внутреннее сопротивление мало (приблизительно 1 Ом и меньше). Это позволяет с их помощью получать токи, измеряемые амперами.
Сторонние электродвижущие силы
Вы будете перенаправлены на Автор24
Используем гидростатическую аналогию:
Сущность сторонних сил
Итак, наличие постоянного тока является доказательством того, что ЭДС имеют не электростатическое происхождение.
Сторонняя электродвижущая сила может быть:
но никак не электростатической.
Механическая сторонняя электродвижущая сила
Рисунок 1. Источник. тока. Автор24 — интернет-биржа студенческих работ
Готовые работы на аналогичную тему
Рисунок 2. Электростатическая машина. Автор24 — интернет-биржа студенческих работ
Последовательность превращений энергии при таком действии выглядит так:
Элемент Вольта
Распространенными источниками постоянного тока служат гальванические элементы. Рассмотрим элемент Вольта. Основные его структурные элементы:
Пластины погружены в раствор кислоты. Учитывая электрохимические потенциалы металлов, получим ЭДС элемента Вольта около 1,1 В.
Ошибочно предполагать, что сторонние ЭДС появляются в пространстве между пластинами. В элементе Вольта возникают две сторонние ЭДС, которые локализованы в поверхностных слоях, где соприкасаются пластинки с раствором кислоты. Данные слои имеют толщину размера молекулы. Во всем остальном объеме раствора сторонних ЭДС нет.
Если соединить пластины элемента при помощи проводника, то в нем возникнет электрический ток, направленный от медной пластины (положительного электрода) к пластине из цинка (отрицательному электроду).
В растворе в пространстве между электродами, ток направлен от цинка к меди. Получается, что линии постоянного тока замкнуты.
Сторонняя ЭДС элемента определена свойствами элемента и не зависит от силы протекающего по цепи тока. Падение напряжения на внешней цепи ($U=RI$) не равно ЭДС элемента и всегда меньше ее. Это напряжение между клеммами работающего элемента, если по цепи течет ток. При росте силы тока, напряжение во внешней цепи уменьшается, причем тем больше, чем значительнее внутреннее сопротивление элемента. Используя элемент, надо помнить, нужно, чтобы напряжение во внешней цепи как можно меньше зависело от силы тока, то есть от нагрузки. Следовательно, важной характеристикой элемента служит внутреннее сопротивление. Чем меньше внутреннее сопротивление (при других равных характеристиках), тем выше качество источника сторонних ЭДС.
Сторонние электродвижущие силы
Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока называются сторонними силами.
Электродвижущая сила
Напряжение
Напряжение – это физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи.
Разность потенциалов
Напряжение на неоднородном участке цепи (где есть сторонние силы) равно сумме ЭДС источника и разности потенциалов на этом участке:
Закон Ома для однородного участка цепи в интегральной и дифференциальной форме
Закон Ома для однородного участка цепи: н емецкий физик Георг Ом экспериментально установил, чтосила тока в цепи прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника:.
Сопротивление и его зависимость от температуры
Температурная зависимость сопротивления может быть представлена в виде:,
Сверхпроводимость
Сверхпроводимость – свойство некоторых проводников, заключающееся в том, что их электрическое сопротивление скачкомпадает до нуля при охлаждении ниже определенной критической температуры T к, характерной для данного проводника.
16. Работа и мощность тока. Закон Джоуля – Ленца в интегральной и дифференциальной форме
Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем иЭ. Ленцем и носит название закона Джоуля–Ленца .
Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт).
,
Закон Джоуля-Ленца в дифференциальной форме носит совершенно общий характер, т. е. не зависит от природы сил, возбуждающих электрический ток. Закон Джоуля-Ленца, как показывает опыт, справедлив и для электролитов и для полупроводников.
Согласно (11.4), э.д.с. численно равна работе сторонних сил, совершаемой при перемещении единичного положительного заряда по замкнутой цепи.
Помимо сторонних сил, на заряд действуют силы электростатического поля, имеющего напряжённость . Следовательно, результирующая сила , действующая на заряд в любой точке цепи, может быть записана в виде Данное правило Кирхгофа является условием стационарности токов. В противном случае потенциал рассматриваемого узла изменялся бы с течением времени, и это привело бы к изменению токов в цепи.
Второе правило Кирхгофа гласит, что алгебраическая сумма произведений сил токов в отдельных участках произвольного замкнутого контура на сопротивления этих участков равна алгебраической сумме э.д.с., действующих в этом контуре:
. (11.13)
Здесь и — сила тока и сопротивление для некоторого участка замкнутой цепи, — значение э.д.с. в этой же цепи.
Второе правило Кирхгофа является следствием закона Ома для замкнутой цепи. Направление обхода замкнутого контура и направление токов на всех участках цепи выбирают произвольным образом. Сила тока записывается со знаком «+», если его направление совпадает с направлением обхода замкнутого контура, и со знаком «-» в противоположном случае. Значение э.д.с. записывается со знаком «+», если при обходе замкнутого контура движение внутри источника осуществляется от его отрицательного полюса к положительному, то есть совпадает по направлению с внутренним током источника.
Для нахождения всех неизвестных токов необходимо решить систему независимых уравнений, в которой число уравнений должно быть равно числу неизвестных токов. В результате решения системы уравнений могут быть получены отрицательные значения силы тока. Это означает, что на рассматриваемом участке цепи реальный ток проходит в противоположном направлении относительно выбранного направления.
Например, в цепи, показанной на рисунке 16, можно выделить три замкнутых контура, для которых второе правило Кирхгофа имеет вид
(11.14)
Здесь первое уравнение записано для контура
, второе уравнение – для контура
, третье уравнение – для контура
. Если источники соединены в батарее параллельно, то
.
При прохождении электрического тока в цепи выделяется тепло. Этот процесс можно характеризовать с помощью понятия о тепловой мощности тока
. (11.16)
Используя закон Ома для участка цепи (10.10), выражение для тепловой мощности тока (11.16) можно представить в другой форме:
. (11.17)
Для переменного тока тепловая мощность зависит от времени. Если ток изменяется сравнительно медленно, его называют квазистационарным. Условие квазистационарности будет сформулировано в разделе 30. В этом случае количество выделяющейся теплоты можно вычислить следующим образом:
, (11.18)
где и — начальный и конечный моменты времени.
Для постоянного тока тепловая мощность не зависит от времени, и интеграл в выражении (11.18) следует заменить произведением мощности на длительность рассматриваемого промежутка времени.
Закон Джоуля – Ленца можно сформулировать также в дифференциальной форме. Для этого необходимо ввести в рассмотрение объёмную плотность тепловой мощности тока , то есть количество теплоты, выделяемой в единицу времени в единичном объеме проводника
Используя соотношение (11.16) и (11.19), получаем локальную формулировку закона Джоуля – Ленца:
. (11.20)
Учитывая закон Ома (10.11), закон Джоуля – Ленца в дифференциальной форме можно записать также следующим образом
. (11.21)
Д ля выяснения физического смысла формулы (11.20) введём в рассмотрение объёмную плотность силы, действующей со стороны электрического поля на свободные заряды
Если на концах какого-нибудь провод-ника AB создать разность потенциалов (рис. 5.16), то в нем возникнет электрическое поле напряженностью E̅.
Под действием этого поля свободные за-ряженные частицы (в металлах — это сво-бодные электроны) будут двигаться в опре-деленном направлении, не прекращая сво-его хаотического движения, создавая кратко-временный ток.
Тем не менее, на практике в подавляющем большинстве случаев необходимо иметь ток в проводниках на протяжении продолжитель-ного времени. Для этого на концах провод-ника разность потенциалов необходимо под-держивать неизменной. Эту функцию в элект-рических цепях выполняют источники тока.
Любой источник тока имеет два полюса: положительный и отрицательный. Источ-ник, как и любой другой проводник, имеет свое сопротивление r, которое называется внутренним сопротивлением (рис. 5.17).
На полюсах источника на протяжении продолжительного времени существует раз-ность потенциалов. Но почему же в таком случае не возникает ток в самом источнике? В самом деле, на полюсах батареи для кар-манного фонарика довольно долго сущест-вует разность потенциалов, однако ток воз-никает лишь тогда, когда к полюсам бата-реи подсоединяется лампочка. Очевидно, что в источнике существуют какие-то силы, ко-торые стараются поддерживать разность потен-циалов на его полюсах, противодействуют электрическим силам, стремящимся выров-нять потенциалы на полюсах источника. Эти силы имеют неэлектрическое происхожде-ние, поэтому и называются сторонними.
Рис. 5.17. Источник тока |
Сторонние силы обусловливают разде-ление разноименно заряженных частиц в источнике и поддерживают на его полюсах определенную разность потенциалов. В галь-ванических элементах разделение заряжен-ных частиц осуществляется за счет хими-ческой энергии, в термогенераторах — за счет тепловой и т.п.
Очевидно, что напряженности поля сто-ронних сил и электрических сил в источнике имеют противоположные направ-ления. Если внешняя часть цепи источника разомкнута, то напряженности обоих полей в источнике одинаковы и никакого тока в источнике нет.
Когда внешняя часть цепи ис-точника разомкнута, то напря-женность поля сторонних сил и электрических сил в источнике одинаковы по значению и про-тивоположны по направлению, поэтому и компенсируют друг друга.
Таким образом, роль источника сводится к разделению разноименно заряженных ча-стиц и к накоплению их на полюсах источ-ника.
Смещение под действием электрического поля зарядов в проводнике всегда происходит таким образом, что электрическое поле в проводнике исчезает и ток прекращается. Для протекания тока в течение продолжительного времени на заряды в электрической цепи должны действовать силы, отличные по природе от сил электростатического поля, такие силы получили название сторонних сил.
Представим стороннюю силу Fст, действующую на заряд q, в виде
Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией
Величина, обратная периоду, называется частотой переменного тока:
СТОРОННИЕ СИЛЫ
Смотреть что такое «СТОРОННИЕ СИЛЫ» в других словарях:
СТОРОННИЕ СИЛЫ — в электродинамике, силы неэлектростатического происхождения, действующие на заряды со стороны источников тока и вызывающие перемещение электрических зарядов внутри источника постоянного тока. Сторонние силы совершают работу по разделению зарядов… … Энциклопедический словарь
СТОРОННИЕ СИЛЫ — непотенциальные (неэлектростатические) силы, действующие на электрические заряды внутри источника тока и вызывающие их перемещение против направления действия сил электростатического поля. Обусловлены хим. реакциями, контактными явлениями,… … Большая политехническая энциклопедия
ПОНДЕРОМОТОРНЫЕ СИЛЫ — вэлектродинамике силы, действующие на тела в электрич. и магн. полях. Термин П. с. введён во времена, когда наряду с весомыми телами признавалось существование невесомых субстанций (эфир, электрич. жидкость и т. п.); в совр. лексиконе иногда… … Физическая энциклопедия
электродвижущая сила — (эдс), величина, характеризующая источник энергии неэлектростатической природы в электрической цепи, необходимый для поддержания в ней электрического тока. Эдс численно равна работе по перемещению единичного положительного заряда вдоль замкнутой… … Энциклопедический словарь
постоянный ток — электрический ток, не изменяющийся во времени. * * * ПОСТОЯННЫЙ ТОК ПОСТОЯННЫЙ ТОК, электрический ток (см. ЭЛЕКТРИЧЕСКИЙ ТОК), величина и направление которого не изменяются с течением времени. Постоянный электрический ток может возникнуть только… … Энциклопедический словарь
Электродвижущая сила — (эдс) физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль… … Большая советская энциклопедия
Ома закон — для участка электрической цепи (проводника), не содержащего источников эдс, устанавливает связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах: сила тока прямо пропорциональна напряжению и обратно… … Энциклопедический словарь
вольтметр — а; м. [от сл. вольт и греч. metron мера] Прибор для измерения напряжения в электрической цепи. * * * вольтметр прибор для измерения эдс или напряжения (в мкВ, мВ, В, кВ) в электрических цепях; включается параллельно нагрузке. * * * ВОЛЬТМЕТР… … Энциклопедический словарь
СИЛА — жен. источник, начало, основная (неведомая) причина всякого действия, движенья, стремленья, понужденья, всякой вещественой перемены в пространстве, или: начало изменяемости мировых явлений, Хомяков. Тяготенье основная сила природы. Сила есть… … Толковый словарь Даля
электромагнитная индукция — возникновение электродвижущей силы (эдс индукции) в замкнутом проводящем контуре при изменении потока магнитной индукции через площадь, ограниченную этим контуром; электрический ток, вызванный этой эдс, называется индукционным током. * * *… … Энциклопедический словарь
Сторонние силы. Электродвижущая сила и напряжение
Сторонние силы. ЭДС.
Сторонние силы и ЭДС |