Что называется степенью с рациональным показателем
1.1.6 Степень с рациональным показателем и её свойства
Видеоурок 1: Степень с рациональным показателем
Видеоурок 2: Степень с рациональным показателем. Решение примеров
Лекция: Степень с рациональным показателем и её свойства
Степень с рациональным показателем
Любую степень с рациональным показателем можно представить в виде корня, чья степень будет равна знаменателю дроби, находящейся в показателе степени, а числитель будет степенью подкоренного выражения.
Свойства степени с рациональным показателем
Все, перечисленные ниже степени используются для рациональных чисел p, q и для положительных a, b.
1. Если Вам необходимо умножить две степени с рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.
2. Если необходимо разделить две степени c рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть.
3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.
4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.
5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.
6. Если некоторая дробь имеет отрицательный рациональный показатель степени, то для избавления от знака минуса, её следует перевернуть.
Очень важно помнить, что знак степени не влияет на знак выражения при возведении в степень.
Степень с рациональным показателем
Мы уже знакомы с понятием степени с целым показателем. Давайте разберемся, что такое степень с рациональным показателем.
Рациональный показатель – это выражение вида \(\frac
\), где \(p\)-некоторое целое число, а \(q\) – натуральное число, причем \(q\ge2\).
Положительное число \(a\) в рациональной степени \(\frac
\) является арифметическим корнем степени \(q\) из числа \(a\) в степени \(p\):
Обращаем ваше внимание, что
Неважно в каком порядке – сначала извлечь корень или возвести в степень, от этого смысл выражения не теряется. Как удобнее, так и считайте.
Пусть есть некоторое положительное число \(a\) и целое число \(p\), тогда справедливы следующие соотношения:
где \(k\) и \(q\) – натуральные числа большие 1.
Давайте попробуем их доказать:
Из определения степени с рациональным показателем следует, что:
Опять из определения и свойства корня n-й степени следует:
Третья формула на наш взгляд очевидна, просто сократить степень справа и получите исходное выражение.
Свойства степени с рациональным показателем
Пусть \(a\) и \(b\) – некоторые положительные числа, а числа \(m\) и \(n\) – рациональные числа. Тогда выполняются соотношения:
При умножении степеней с рациональным показателем и одинаковым основанием их показатели степени складываются.
При делении степеней с рациональным показателем и одинаковым основанием их показатели степени вычитаются.
При возведении степени с рациональным показателем в степень с рациональным показателем их показатели перемножаются.
Степень с рациональным показателем от произведения двух положительных чисел равна произведению степеней этих множителей.
Степень с рациональным показателем от частного двух положительных чисел равна частному степеней этих чисел.
И еще два очень важных свойства степеней. Они вам понадобятся при решении показательных уравнений и неравенств.
Пусть опять есть некоторое положительное число \(a>1\) и рациональные числа \(n\) и \(m\).
При \(n \gt 0\) \(a^n \gt 1\),
При \(n \lt 0\) \(0 \lt a^n \lt 1\).
Если же \(a \gt 1\) и \(n \gt m\), то
Если \( 0 \lt a \lt 1 \) и \(n \gt m\), то
Разберем несколько примеров:
Так как основание степени больше единицы \(3 \gt 1\) и \(\frac<1> <3>\lt \frac<1><2>\).
Так как \(0 \lt \frac<1> <5>\lt 1\) и \(\frac<1> <3>\lt \frac<1><2>\)
Описание урока
От успешной сдачи государственного экзамена по математике зависит поступление в высшее учебное заведение. Степень с рациональным показателем – важная тема, изучение которой необходимо для успешной подготовки к ЕГЭ. От того, насколько хорошо она освоена, зависит в будущем, насколько легко будет решать уравнения и производить более сложные операции с числами. Задание номер 15 строится на умении работать с такими степенями. Чтобы понимать, о чём идёт речь, стоит ознакомиться с определением степени с рациональным показателем и её основными свойствами, которые пригодятся и при работе с функциями.
Важно запомнить, что число А не должно быть меньше 0, а число q не равно 1.
Свойства степени с рациональным показателем
Знание свойств степеней с показателем, равным рациональному числу, облегчает работу с уравнениями и функциями, где содержатся такие выражения. Внимательно их изучив, можно достаточно быстро выполнять задания, что немаловажно в процессе написания ЕГЭ.
Одно из основных свойств: произведение двух степеней с одинаковым основанием равно основанию в степени, равной сумме степеней двух множителей.
При делении степеней с рациональным показателем из показателя делимого вычитают показатель делителя. У степени с рациональным показателем есть и другие свойства, которые также присущи степени с обыкновенным показателем. Их легко запомнить, а чтобы примеры помогли внимательнее рассмотреть свойства, посмотрите видео, в котором о них рассказывается подробнее.
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №17. Степень с рациональным и действительным показателем.
Перечень вопросов, рассматриваемых в теме
2) определение степени с рациональным и действительным показателем;
3) нахождения значения степени с действительным показателем.
Если n- натуральное число, , m— целое число и частное является целым числом, то при справедливо равенство:
.
При любом действительном х и любом положительном а ) степень является положительным числом:
Но если основание степени а=0, то степень определяют только при и считают, что
При выражение не имеет смысла.
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Пример: вычислим
Мы можем представить , тогда
Таким образом, мы можем записать
или
На основании данного примера можно сделать вывод:
Если n- натуральное число, , m— целое число и частное является целым числом, то при 0 справедливо равенство:
.
Таким образом, степень определена для любого рационального показателя r и любого положительного основания а.
Если , то выражение имеет смысл не только при 0, но и при а=0, причем, Поэтому считают, что при r0 выполняется равенство
Пользуясь формулой степень с рациональным показателем можно представить в виде корня и наоборот.
Рассмотрим несколько примеров:
Отметим, что все свойства степени с натуральным показателем, которые мы с вами повторили, верны для степени с любым рациональным показателем и положительным основанием, а именно, для любых рациональных чисел p и q и любых 0 и 0 ы следующие равенства:
Разберем несколько примеров, воспользовавшись данными свойствами:
В числителе вынесем общий множитель ab за скобки, в знаменателе представим корни в виде дробных показателей степени:
А теперь дадим определение степени с действительным показателем, на примере .
Пусть последовательность десятичных приближений с недостатком :
Эта последовательность стремится к числу , т.е.
Числа являются рациональными, и для них определены степени т.е. определена последовательность
Можно сделать вывод, что данная последовательность стремится к некоторому действительному числу, которое обозначают , т.е. .
Опредление степени с действительным показателем.
При любом действительном х и любом положительном а ) степень является положительным числом:
Но если основание степени а=0, то степень определяют только при и считают, что
При выражение не имеет смысла.
Для степени с действительным показателем сохраняются все известные свойства степени с рациональным показателем, из которых следует теорема.
Теорема. Пусть и . Тогда .
По условию . Поэтому, по свойству 1 имеем
а^(х₂). Умножив обе части этого равенства на положительное число , получим . По свойству умножения степеней получаем: , т.е. .
Из данной теоремы вытекают три следствия:
.
.
Эти теорема и следствия помогают при решении уравнений и неравенств, сравнении чисел.
Примеры и разборы решения заданий тренировочного модуля
Пример 1. Сравнить числа
Сравним показатели
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №17. Степень с рациональным и действительным показателем.
Перечень вопросов, рассматриваемых в теме
2) определение степени с рациональным и действительным показателем;
3) нахождения значения степени с действительным показателем.
Если n- натуральное число, , m— целое число и частное является целым числом, то при справедливо равенство:
.
При любом действительном х и любом положительном а ) степень является положительным числом:
Но если основание степени а=0, то степень определяют только при и считают, что
При выражение не имеет смысла.
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Пример: вычислим
Мы можем представить , тогда
Таким образом, мы можем записать
или
На основании данного примера можно сделать вывод:
Если n- натуральное число, , m— целое число и частное является целым числом, то при 0 справедливо равенство:
.
Таким образом, степень определена для любого рационального показателя r и любого положительного основания а.
Если , то выражение имеет смысл не только при 0, но и при а=0, причем, Поэтому считают, что при r0 выполняется равенство
Пользуясь формулой степень с рациональным показателем можно представить в виде корня и наоборот.
Рассмотрим несколько примеров:
Отметим, что все свойства степени с натуральным показателем, которые мы с вами повторили, верны для степени с любым рациональным показателем и положительным основанием, а именно, для любых рациональных чисел p и q и любых 0 и 0 ы следующие равенства:
Разберем несколько примеров, воспользовавшись данными свойствами:
В числителе вынесем общий множитель ab за скобки, в знаменателе представим корни в виде дробных показателей степени:
А теперь дадим определение степени с действительным показателем, на примере .
Пусть последовательность десятичных приближений с недостатком :
Эта последовательность стремится к числу , т.е.
Числа являются рациональными, и для них определены степени т.е. определена последовательность
Можно сделать вывод, что данная последовательность стремится к некоторому действительному числу, которое обозначают , т.е. .
Опредление степени с действительным показателем.
При любом действительном х и любом положительном а ) степень является положительным числом:
Но если основание степени а=0, то степень определяют только при и считают, что
При выражение не имеет смысла.
Для степени с действительным показателем сохраняются все известные свойства степени с рациональным показателем, из которых следует теорема.
Теорема. Пусть и . Тогда .
По условию . Поэтому, по свойству 1 имеем
а^(х₂). Умножив обе части этого равенства на положительное число , получим . По свойству умножения степеней получаем: , т.е. .
Из данной теоремы вытекают три следствия:
.
.
Эти теорема и следствия помогают при решении уравнений и неравенств, сравнении чисел.
Примеры и разборы решения заданий тренировочного модуля
Пример 1. Сравнить числа
Сравним показатели