Что называется средством измерения в метрологии

Мокров Ю. Метрология, стандартизация, сертификация

ОГЛАВЛЕНИЕ

Глава 3. Cредства измерений и их свойства

Измерения выполняются с помощью технических средств, которые называются средствами измерений (СИ). Разработка СИ является задачей приборостроения. В метрологии СИ рассмат-риваются с точки зрения их единой классификации и выявления параметров, которые обеспечивают получение результата измерений с заданной точностью. Здесь же рассматриваются методы и средства передачи размеров единиц от эталонов к рабочим средствам измерений.

Оценка пригодности средств измерений для решения тех или иных измерительных задач проводится путем рассмотрения их метрологических характеристик.
Метрологическая характеристика (МХ) – характеристика одного из свойств средства измерений, влияющая на результат измерений и его погрешность. Метрологические характеристики позволяют судить об их пригодности для измерений в известном диапазоне с известной точностью. Метрологические характеристики, устанавливаемые нормативными документами на средства измерений, называют нормируемыми метрологическими характеристиками, а определяемые экспериментально – действи-тельными.
Для каждого типа СИ устанавливаются свои метрологические характеристики. Ниже рассматриваются наиболее распространенные на практике метрологические характеристики.
Диапазон измерений СИ – область значений величины, в пределах которой нормированы его допускаемые пределы погрешности. Для мер это их номинальное значение, для преобразователей — диапазон преобразования. Различают нижний и верхний пределы измерений, которые выражаются значениями величины, ограничивающими диапазон измерений снизу и сверху.
Погрешность СИ — разность между показанием средства измерений – Хп и истинным (действительным) значением измеряемой величины – Х д.
Существует распространенная классификация погрешностей средств измерений. Ниже приводятся примеры их наиболее часто используемых видов.
Абсолютная погрешность СИ – погрешность средства измерений, выраженная в единицах измеряемой величины: DХ = Хп – Хд. Абсолютная погрешность удобна для практического применения, т.к. дает значение погрешности в единицах измеряемой величины. Но при ее использовании трудно сравнивать по точности приборы с разными диапазонами измерений. Эта проблема снимается при использовании относительных погрешностей.
Если абсолютная погрешность не изменяется во всем диапазоне измерения, то она называется аддитивной, если она изменяется пропорционально измеряемой величине (увеличивается с ее увеличением), то она называется мультипликативной
Относительная погрешность СИ – погрешность средства измерений, выраженная отношением абсолютной погрешности СИ к результату измерений или к действительному значению измеренной величины: d = DХ / Хд. Относительная погрешность дает наилучшее из всех видов погрешностей представление об уровне точности измерений, который может быть достигнут при использовании данного средства измерений. Однако она обычно существенно изменяется вдоль шкалы прибора, например, увеличивается с уменьшением значения измеряемой величины. В связи с этим часто используют приведенную погрешность.
Приведенная погрешность СИ – относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины ХN, которое называют нормирующим: g = DХ / ХN..
Относительные и приведенные погрешности обычно выражают либо в процентах, либо в относительных единицах (долях единицы).
Для показывающих приборов нормирующее значение устанавливается в зависимости от особенностей и характера шкалы. Приведенные погрешности позволяют сравнивать по точности средства измерений, имеющие разные пределы измерений, если абсолютные погрешности каждого из них не зависят от значения измеряемой величины.
По условиям проведения измерений погрешности средств измерений подразделяются на основные и дополнительные.
Основная погрешность СИ – погрешность средства измерений, применяемого в нормальных условиях, т.е. в условиях, которые определены в НТД не него как нормальные. Нормальные значения влияющих величин указываются в стандартах или технических условиях на средства измерений данного вида в форме номиналов с нормированными отклонениями. Наиболее типичными нормальными условиями являются:

— относительная влажность (65±15) %;

Иногда вместо номинальных значений влияющих величин указывается нормальная область их значений. Например, влажность (30 – 80) %.
Дополнительная погрешность СИ – составляющая погрешности СИ, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения. Деление погрешностей на основные и дополнительные обусловлено тем, что свойства средств измерений зависят от внешних условий.
Погрешности по своему происхождению разделяются на систематические и случайные.
Систематическая погрешность СИ – составляющая погрешности средства измерений, принимаемая за постоянную или закономерно изменяющуюся. Систематические погрешности являются в общем случае функциями измеряемой величины и влияющих величин (температуры, влажности, давления, напряжения питания и т.п.).
Случайная погрешность СИ – составляющая погрешности средства измерений, изменяющаяся случайным образом. Случайные погрешности средств измерений обусловлены случайными изменениями параметров составляющих эти СИ элементов и случайными погрешностями отсчета показаний приборов.
При конструировании прибора его случайную погрешность стараются сделать незначительной в сравнении с другими погрешностями. У хорошо сконструированного и выполненного прибора случайная погрешность незначительна. Однако при увеличении чувствительности средств измерений обычно наблюдается увеличение случайной погрешности. Тогда при повторных измерениях одной и той же величины в одних и тех же условиях результаты будут различными. В таком случае приходится прибегать многократным измерениям и к статистической обработке получаемых результатов. Как правило, случайную погрешность приборов снижается до такого уровня, что проводить многократные измерений нет необходимости.
Стабильность СИ — качественная характеристика средства измерений, отражающая неизменность во времени его метрологических характеристик.
Градуировочная характеристика СИ – зависимость между значениями величин на входе и выходе средства измерений, полученная экспериментально. Может быть выражена в виде формулы, графика или таблицы.

3.3 Использование СИ

Средства измерений можно использовать только тогда, когда известны их метрологические характеристики. Обычно указываются номинальные значения параметров средств измерений и допускаемые отклонения от них. Сведения о метрологических характеристиках приводятся в технической документации на средства измерений или указываются на них самих. Как правило, реальные метрологические характеристики имеют отклонения от их номинальных значений. Поэтому устанавливают границы для отклонений реальных метрологических характеристик от номинальных значений – нормируют их. Нормирование метрологических характеристик средств измерений позволяет избежать произвольного установления их характеристик разработчиками.
C помощью нормируемых метрологических характеристик решаются следующие основные задачи:

Нормирование характеристик СИ проводится в соответствии с положениями стандартов. Например, ГОСТ 8.009-84 «ГСИ. Нормируемые метрологические характеристики средств измерений». Соответствие средств измерений установленным для них нормам делает эти средства взаимозаменяемыми.
Одной из важнейших метрологических характеристик СИ является их погрешность, знание которой необходимо для оценивания погрешности измерения.
Необходимо отметить, что погрешность СИ является только одной из составляющих погрешности результата измерений, получаемого с использованием данного СИ. Другими составляющими являются погрешность метода измерений и погрешность оператора, проводящего измерения.
Погрешности средств измерений могут быть обусловлены различными причинами:

3.5 Класс точности СИ и его обозначение

Установление рядов пределов допускаемых погрешностей позволяет упорядочить требования к средствам измерений по точности. Это упорядочивание осуществляется путем установления классов точности СИ.
Класс точности СИ – обобщенная характеристика данного типа СИ, отражающая уровень их точности, выражаемая пределами допускаемой основной, а в некоторых случаях и дополнительных погрешностей (они рассмотрены выше), а также другими характеристиками, влияющими на точность. Класс точности применяется для средств измерений, используемых в технических измерениях, когда нет необходимости или возможности выделить отдельно систематические и случайные погрешности, оценить вклад влияющих величин с помощью дополнительных погрешностей. Класс точности позволяет судить о том, в каких пределах находится погрешность средств измерений одного типа, но не является непосредственным показателем точности измерений, выполняемых с помощью каждого из этих средств. Класс точности СИ конкретного типа устанавливают в стандартах технических требований или других нормативных документах.
При выражении предела допускаемой основной погрешности в форме абсолютной погрешности класс точности в документации и на средствах измерения обозначается прописными буквами латинского алфавита или римскими цифрами. Чем дальше буква от начала алфавита, тем больше погрешность. Расшифровка соответ-ствия букв значению абсолютной погрешности осуществляется в технической документации на средство измерения.
Выражение класса точности через относительные и приведенную погрешности рассмотрено в предыдущем разделе
В настоящее время по отношению к современным средствам измерений понятие класс точности применяется довольно редко. В основном он чаще всего используется для описания характеристик электроизмерительных приборов, аналоговых стрелочных приборов всех типов, некоторых мер длины, весов, гирь общего назначения, манометров.
Примеры обозначение классов точности для различных форм выражения погрешности приведены в таблице.

Обозначение классов точности

___________________________________________________________
Пределы допускаемой Обозначения Форма выраже-
Что называется средством измерения в метрологииосновной погрешности ния погрешности
в документации на приборе
Что называется средством измерения в метрологииg = ± 1,5 Класс точности 1,5 1,5 Приведенная
погрешность

d = ± 0,5 Класс точности 0,5 0,5 Относительная
погрешность,
постоянная

d = ± [ 0,02 + 0,01( xk/x –1)] Класс точности 0,02/0,01 Относительная
0,02/0,01 погрешность,
возрастает с
уменьшением х
Что называется средством измерения в метрологии

Результаты калибровки удостоверяются калибровочным знаком, наносимым на СИ, или сертификатом о калибровке. Калибровке присущ ряд особенностей по сравнению с поверкой. Это добровольная процедура и она может выполняться любой метрологической службой. При этом аккредитация на право калибровки также является добровольной (не обязательной) процедурой.
Отмеченные особенности калибровки являются следствием разгосударствления процессов контроля за метрологической исправностью средств измерений – отказом от их всеобщей обязательности поверки.
Хотя калибровка может проводиться любой метрологической службой и является добровольной процедурой, для ее проведения необходимы определенные условия. Основное из них – прослеживание измерений, т.е. обязательная передача размера единицы от эталона к калибруемому рабочему средству измерений.
Для организации работ по калибровке в РФ создана Российская система калибровки (РСК), в которую входят государственные научные метрологические центры, органы ГМС, метрологические службы юридических лиц, объединенные целью ОЕИ в сферах, не подлежащих государственному метрологическому контролю и надзору.
Российская система калибровки базируется на следующих принципах:

Источник

Осипова Галина Егоровна

Тема: Средства измерений

Задание для самостоятельной работы: выписать определения и ответить на вопросы в конце темы.

1. Определение и виды средств измерений

Средствами измерений называют технические устройства для практического измерения единицы физической величины, имеющие нормированные погрешности. К средствам измерений относятся: меры, датчики информации (индикаторы), измерительные преобразователи, измерительные приборы, измерительные установки и системы, измерительные принадлежности.

Мерой называется средство измерения, предназначенное для воспроизведения физических величин заданного размера (гири, рулетки, мерные стаканы, цилиндры и т.п.). На практике используют однозначные и многозначные меры, а также наборы и магазины мер.

Однозначные меры воспроизводят величины только одного размера (гиря). К однозначным мерам относятся стандартные образцы и стандартные вещества. *Стандартный образец – это должным образом оформленная проба вещества (материала), которая подвергается метрологической аттестации с целью установления количественного значения определенной характеристики. Эта характеристика является величиной с известным значением при установленных условиях внешней среды.*

Многозначные меры воспроизводят несколько размеров физической величины (миллиметровая линейка дает возможность выразить длину предмета в сантиметрах и миллиметрах).

Наборы и магазины мер представляют собой объединение однозначных или многозначных мер для получения некоторых промежуточных или суммарных значений измеряемой величины. Набор мер – это комплект однородных мер разного размера (набор лабораторных гирь). Магазин мер – сочетание мер, конструктивно объединенных в одно механическое целое, в которых посредством ручных или автоматизированных переключателей можно соединять составляющие магазин мер в нужном сочетании (магазин сопротивлений).

При пользовании мерами следует учитывать номинальное и действительное значение мер, погрешность меры и ее разряд. Номинальным называют значение меры, указанное на ней. Действительное значение меры должно быть указано в специальном свидетельстве как результат высокоточного измерения с использованием официального эталона. Разность между номинальным и действительным значениями называется погрешностью меры. Меры подразделяются на разряды (1, 2, и т.д.) в зависимости от эталона, чьей копией они являются. Меры 1 разряда получены при копировании вторичного эталона, утвержденного Госстандартом. Разрядные эталоны используют для поверки измерительных средств.

2. Эталоны, их классификация

Эталон – это высокоточная мера, предназначенная для воспроизведения и хранения единицы величины с целью передачи ее размера другим средствам измерений. От эталона единица величины передается разрядным эталонам, а от них – рабочим средствам измерения. Эталоны классифицируются на первичные, вторичные и рабочие.

Первичный эталон— это эталон, воспроизводящий единицу величины с наивысшей точностью, возможной в данной области измерений на современном уровне научно-технических достижений. Первичный эталон может быть национальным (государственным) или международным. В России национальные эталоны утверждает Госстандарт РФ. Международные эталоны хранит и поддерживает Международное бюро мер и весов (МБМВ). Важнейшая задача деятельности МБМВ состоит в систематических сличениях национальных эталонов с международными эталонами. Сличению подлежат эталоны как основных величин системы СИ, так и производных. Установлены определенные периоды сличения. Так эталоны метра и килограмма сличают каждые 25 лет, а электрические и световые эталоны – один раз в 3 года.

Вторичные эталоны (эталоны-копии) могут утверждаться либо Госстандартом РФ, либо государственными научными метрологическими центрами.

Рабочие (разрядные) эталоны воспринимают размер единицы от вторичных эталонов и в свою очередь служат для передачи размера менее точному рабочему эталону (или эталону более низкого разряда) и рабочим средствам измерений.

Самыми первыми официально утвержденными эталонами были прототипы метра и килограмма, изготовленные во Франции. В 1799 году они были переданы на хранение в национальный архив Франции и поэтому их стали называть «метр Архива» и «килограмм Архива». Каждый эталон имеет свою интересную историю и связан стонкими научными исследованиями и экспериментами.

3. Измерительные преобразователи

Измеряемое свойство должно сначала быть как-то обнаружено, а потом измерено. Технические устройства для обнаружения физических свойств называются индикаторами (стрелка компаса, лампочка, лакмусовая полоска). Индикаторы играют ту же роль, что и органы чувств человека, но значительно расширяют их возможности. Например, человек слышит в диапазоне частот от 16 Гц до 20 кГц, а технические средства обнаруживают звуковые колебания в диапазоне от инфра низких (доли герца) до ультравысоких ( сотни килогерц) частот. Но до сих пор не создано технических устройств, которые могли бы соперничать с обонянием человека и животных. Важнейшей технической характеристикой индикаторов служит порог обнаружения (порог чувствительности). Чем меньше порог, тем более слабый сигнал регистрирует индикатор. Современные индикаторы обладают очень низкими порогами обнаружения, лежащими на уровне фоновых помех и собственных шумов аппаратуры. Индикаторы служат средством измерения по шкале порядка.

Датчики – это средство измерений, предназначенное для восприятия физических величин и преобразования сигнала измерительной информации в форму удобную для обработки, хранения и передачи в показывающее устройство. Датчики либо входят в конструктивную схему измерительного прибора, либо применяются совместно с ним. Сигнал, воспринимаемый датчиком называется входной величиной, а результат преобразования – выходной величиной. Основной метрологической характеристикой измерительного преобразователя считается соотношение между входной и выходной величинами, называемое функцией преобразования.

В качестве преобразователей в физической культуре и спорте наиболее популярны: фотодиоды, реостатные датчики, тензорезисторы, акселерометры.

Фотодиоды (фотопреобразователи) используются в устройствах для измерения времени движения. Входная величина – освещенность, выходная – постоянный ток. Они чувствительны в диапазоне от 0-500 Гц и имеют погрешность в 1-3%.

Тензорезисторы – являются элементом измерительной системы для оценки динамических показателей движения. Входная величина тензорезисторов – перемещение, выходная – изменение сопротивления. Достоинством их является невысокая стоимость, устойчивость к вибрациям и малая погрешность измерения.

Акселерометры – предназначены для измерения ускорения. В основе работы лежит измерение силы инерции, возникающей при движении. Сила инерции вызывает отклонение массы акселерометра, которое прямо пропорционально ускорению. Это отклонение измеряется тензорезистором или пьезоэлектрическим датчиком.

В процессе преобразования измерительной информации происходит и усиление сигнала, воспринятого датчиком. В спорте для усиления сигналов, снимаемых с первичных преобразователей биомеханических параметров движений, чаще используют тензоусилители и миниатюрные усилители постоянного тока, коэффициент усиления которых достигает 500 000.

4. Измерительные приборы, установки и системы

Измерительные приборы – это средства измерений, состоящие из совокупности преобразовательных элементов, образующих измерительную цепь и отсчетного устройства. Они позволяют получать измерительную информацию в форме удобной для восприятия пользователем. Различают приборы прямого действия и приборы сравнения. К приборам прямого действия относят амперметры. вольтметры, термометры, барометры. Они отображают измеряемую величину на показывающем устройстве, имеющем соответственную градуировку в единицах этой величин. Приборы сравнения предназначаются для сравнения измеряемых величин с величинами, значения которых известны (весы, прибор для определения яркости источников излучения и другие.)

Измерительные установки состоят из функционально объединенных средств измерений и вспомогательных устройств, собранных в одном месте.

В измерительных системах эти средства и устройства территориально разобщены и соединены каналами связи. Обычно они полностью автоматизированы. В спорте такие системы используются например для измерения опорных реакций – тензодинамографические измерения. В систему входят: тензоплатформа с усилительным устройством, устройство записи данных, самописец, передатчик, осциллоскоп, ЭВМ.

Вспомогательные средства измерения необходимы для вычисления поправок, если требуется высокая степень точности. Часто они фиксируют внешние условия измерения: температуру, влажность.

5. Передача и представление измерительной информации

Передача результатов измерения в области ФК и спорта осуществляется двумя способами:

— с помощью проводной связи между спортсменом и исследовательской аппаратурой,

— путем беспроводной связи (с помощью радиоволн)

Проводная телеметрия чаще используется при лабораторных исследованиях. Она отличается высокой помехоустойчивостью, но в то же время провода, идущие от спортсмена, мешают его действиям.

Радиотелеметрия позволяет осуществлять контроль за техникой выполнения в реальных динамических условиях. На спортсмене крепятся датчики, усилители и преобразователи информации, радиопередатчик и антенна. Все это очень компактно и не мешает спортсмену свободно перемещаться по спортивной площадке. Посылаемые передающим устройством сигналы принимаются блоком, состоящим из антенны и приемника. Здесь происходит отображение, хранение и автоматическая обработка результатов измерений. В нашей стране нет серийного производства радиотелеметрических систем. Такие устройства создаются отдельными организациями, научными сотрудниками в единичных экземплярах.

Результаты измерений в цифровой форме высвечиваются на разных цифровых табло. Цифровая индикация может быть следующих типов:

В электронных цифровых приборах используются светодиоды или жидкие кристаллы.

При использовании ЭВМ результаты могут:

Вопросы для контроля:

Источник

Основные определения в метрологии (измерение, физическая величина, принцип измерения, средства измерения, метод и погрешность измерения).

Основные определения в метрологии (измерение, физическая величина, принцип измерения, средства измерения, метод и погрешность измерения).

Физические величины – свойства, для которых могут быть установлены и воспроизведены градации определенного размера.

Измерение – нахождение значения физической величины опытным путем с помощью специальных технических средств.

Прямое измерение – измерение, при котором искомое значение величины находят непосредственно по показаниям средства измерений

Косвенное измерение – измерение, при котором искомое значение величины находят расчетом на основании известной зависимости между этой величиной и величинами, функционально связанными с искомой и определяемые посредством измерений.

Совместные измерения – одновременные измерения двух или нескольких разнородных величин для установление зависимости между ними.

Совокупные измерения – проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

Метод измерений – совокупность приемов использования принципов и средств измерений, выбранную для решения конкретной измерительной задачи.

Погрешность измерения – количественная характеристика качества измерений, определяемая, как разность между измеренным и истинным значениями измеряемой величины.

Понятие единства измерений. Обзор методов по обеспечению единства измерений.

Для обеспечения единства измерений реализуют следующие научно-технические, методические и административные мероприятия:

I)Использование законодательно установленной системы единиц физических величин.(СИ)

II)разработка и применение эталонов единиц физических величин.

III)использование только аттестованных данных о физических константах и физико-химических свойствах материалов и веществ.

IV)государственные испытания при разработке, выпуске и импорте приборов.

V)периодическая проверка находящихся в обращении средств измерений.

VI)измерение и поверка приборов строго в соответствии с аттестованными методами измерений и поверки.

VII)метрологический контроль за состоянием и применением средств измерений.

3. Эталоны единиц физических величин. Передача размеров единиц физических величин.

Эталон – средство(или комплекс средств) измерений, обеспечивающее воспроизведение и (или) хранение единицы для передачи ее размера нижестоящим по поверочной схеме средствам измерений, выполненное по особой спецификации и официально утвержденное в установленном порядке в качестве эталона.

Передача размеров единиц от первичного эталона: Первичный – рабочие (наивысшей точности) – 1-го разряда (высшей точности) – 2-го разряда (высокой точности) – 3-го разряда (средней точности) – 4-го разряда (низшей точности)

4. Поверка и ее виды. Поверочная схема.

Поверка – совокупность действий выполняемых при определении погрешности средств измерений и их соответствия регламентированным значениям метрологических характеристик.

5. Государственные испытания, проверка и ревизия средств измерений.

Государственным испытаниям подвергают опытные образцы средств измерений нового типа, предназначенные для серийного производства, а так же образцы средств измерений, ввозимые из-за границы.

Поверка – совокупность действий выполняемых при определении погрешности средств измерений и их соответствия регламентированным значениям метрологических характеристик.

Поверка бывает: Первичная; Периодическая; Внеочередная; Инспекторская.

6. Классификация основных методов измерений. Виды измерений. Примеры косвенных и совокупных измерений.

I)метод непосредственной оценки

II)метод сравнения с мерой

VI)поверка измерительных приборов

7. Средства измерений. Классификация средств измерений. Тенденции развития средств измерений.

Средства измерений – технические средства, используемые при измерениях и имеющие нормированные метрологические характеристики.

В настоящее время метрология развивается по нескольким направлениям. Сформировались и развиваются две взаимосвязанные ветви метрологии: научная и законодательная.

В сферу деятельности современной метрологии входит и определение наиболее точных значений важнейших физических констант (скорости света, ускорения силы тяжести и др.).

В последние годы сформировалось учение о методах и приемах измерения (точнее, оценивания) качества – квалиметрия.

Конкретные схемные решения и элементная база средств измерения непрерывно изменяются и совершенствуются.

Цифровые вольтметры

Для цифровых вольтметров характерны:

высокая точность измерений;

широкий диапазон измеряемых значений напряжений;

индикация результатов измерений в цифровой форме;

возможность автоматического выбора шкал и полярности, подключения цифропечатающего устройства для механической регистрации результата, ввода информации об измеряемых величинах в ПК, применения для телеизмерений, превращения в измеритель сопротивлений или измеритель отношений двух напряжений.

1) по назначению – постоянного и переменного тока и напряжения, универсальные импульсные.

2) по схемному решению – с жесткой логикой и микропроцессорным управлением.

3) по методы аналого-цифрового преобразования – с времяимпульсным преобразованием, поразрядного кодирования, считывания и другие.

Цифровые вольтметры с жёсткой логикой

Цифровые вольтметры выпускаются трёх основных типов − постоянно-го тока, переменного тока и универсальные. ЦВ переменного тока и универ-сальные обычно состоят из высокоточного измерительного преобразователя переменного напряжения в постоянное напряжение и ЦВ постоянного тока.

Показания вольтметра выражаются либо в среднеквадратических значениях, либо в средневыпрямленных значениях синусоидального напряжения. Поэтому можно считать вольтметры с жёсткой логикой вольтметрами постоянного тока. Устройство и принцип действия измерительных преобразователей рассмотрены выше.

По принципу действия ЦВ с жёсткой логикой обычно подразделяют начетыре основные группы:

• вольтметры с двойным интегрированием;

• вольтметры поразрядного уравновешивания (кодирования);

• вольтметры с преобразованием напряжения в частоту.

8-17.Вольтметр (вольт + гр. μετρεω измеряю) — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.

Классификация

По принципу действия вольтметры разделяются на: электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;электронные — аналоговые и цифровы

По назначению: постоянного тока;переменного тока;импульсные;фазочувствительные;селективные;универсальные

По конструкции и способу применения: щитовые;переносные;стационарные

4 Цифровые вольтметры

По виду измеряемой величины цифровые вольтметры делятся на: вольт­метры постоянного тока, переменного тока (средневыпрямленного или сред­него квадратического значения), импульсные вольтметры — для измерения параметров видео- и радиоимпульсных сигналов и универсальные вольтмет­ры, предназначенные для измерения напряжения постоянного и переменного тока, а также ряда других электрических и неэлектрических величин (сопро­тивления, температуры и прочее).

Осцилло́граф (лат. oscillo — качаюсь + греч. γραφω — пишу) — прибор, предназначенный для исследования (наблюдения, записи; измерения) амплитудных и временны́х параметров электрического сигнала, подаваемого на его вход, либо непосредственно на экране, либо записываемого на фотоленте.

Классификация

По назначению и способу вывода измерительной информации:

Осциллографы с периодической развёрткой для непосредственного наблюдения формы сигнала на экране (электронно-лучевом, жидкокристаллическом и т. д.) — в зап.-европ. языках oscilloscop(e)

Осциллографы с непрерывной развёрткой для регистрации кривой на фотоленте (шлейфовый осциллограф) — в зап.-европ. языках oscillograph

По способу обработки входного сигнала

По количеству лучей: однолучевые, двулучевые и т. д. Количество лучей может достигать 16-ти и более (n-лучевой осциллограф имеет nное количество сигнальных входов и может одновременно отображать на экране n графиков входных сигналов).

Осциллографы с периодической развёрткой делятся на: универсальные (обычные), скоростные, стробоскопические, запоминающие и специальные; цифровые осциллографы могут сочетать возможность использования разных функций.

Также существуют осциллографы, совмещенные с другими измерительными приборами (напр. мультиметром).

Осциллограф также может существовать не только в качестве автономного прибора, но и в виде приставки к компьютеру (подключаемой через какой-либо порт: LPT, COM, USB, вход звуковой карты).

Универсальные осциллографы

В настоящее время широко используются универсальные осциллографы, с помощью которых можно регистрировать непрерывные и импульсные процессы, исследовать пачки импульсов.

Универсальные осциллографы делятся на приборы с моноблочной конструкцией и приборы со сменными блоками.

Независимо от типа осциллографа в его структуре выделяют следующие основные узлы:

— узел электронно-лучевой трубки (ЭЛТ);

— усилитель отклонения лучей;

— вспомогательные устройства, которые служат для улучшения метрологических характеристик и автоматизации работы осциллографа;

— узлы питания и регулирования.

Устройство синхронизации и запуска развертки (рисунок 4.2), преобразует различные по форме и величине сигналы в стандартные импульсы и позволяет выбрать для запуска развертки момент времени, соответствующий определенному уровню входного сигнала.

Что называется средством измерения в метрологии

Рисунок 4.2 – Структурная схема синхронизации и запуска

С помощью переключателя входа выбирается синхронизирующий сигнал, компаратор определяет момент запуска развертки. Сигнал с усилителя поступает на формирователь импульсов, формирующий запускающий сигнал с крутым передним фронтом, независимо от параметров входного сигнала.

К параметрам входа канала синхронизации предъявляются менее жесткие требования, чем к параметрам входа Y или X-каналов.

На рисунке 4.3 изображена схема универсального осциллографа.

Как видно из рисунка, исследуемый сигнал, поступая на вход канала Y, усиливается и преобразуется в симметричный. Применение симметричного выхода в усилителях осциллографа необходимо для уменьшения специфических искажений сигнала, появляющихся в связи с наличием емкости отклоняющих пластин, а также влияния на скорость движения электронов в трубке среднего потенциала пластин.

Для изменения калиброванного коэффициента отклонения на входе канала Y установлен входной делитель — аттенюатор. При переключении аттенюатора калиброванный коэффициент усиления изменяется в 2 или 2,5 раза при неизменном сопротивлении входа осциллографа.

В предварительном усилителе канала Y предусмотрена плавная регулировка усиления и перемещения изображения по вертикали. Входной каскад усилителя совместно с аттенюатором должен обеспечить малое влияние осциллографа на исследуемый объект, т. е. должен иметь большое входное сопротивление, малую входную емкость и способность пропускать все частоты входного сигнала.

В канале Y имеется линия задержки, которая задерживает входной сигнал на время задержки работы генератора ждущей развертки. Это позволяет получить на экране осциллографа полное изображение процесса, включая даже его самый начальный момент и получить устойчивое изображение импульсного процесса с любыми пара­метрами.

При изучении входных сигналов с большой постоянной составляющей вход осциллографа можно сделать закрытым. Разделительный конденсатор включается переключателем SA1.

На горизонтально отклоняющие пластины трубки поступает вырабатываемое генератором развертки пилообразное напряжение, усиленное усилителем горизонтального отклонения луча (канал X). Регулирование усиления этого усилителя позволяет изменять масштаб изображения по горизонтали и калибровать коэффициент развертки.

В зависимости от характера исследуемых сигналов генератор развертки может работать в непрерывном и ждущем режимах (положение Ж и Н переключателя SA 2)Чтобы изображение на экране осциллографа было неподвижным и стабильным, необходима синхронизация генератора развертки исследуемым процессом. Для этого на генератор развертки подают короткие синхронизирующие импульсы, сформированные из исследуемого сигнала в устройстве синхронизации и запуска развертки (положение 1 SA5)

Синхронизацию непрерывной и ждущей разверток можно осуществлять и от внешних источников сигнала (положение 2SA5).При этом устройство запуска развёртки нормализует синхронизирующий сигнал, превращая его в импульсы с постоянным фронтом.

Чтобы иметь возможность получения изображения функциональной зависимости двух величин, предусмотрена возможность отключения генератора развертки от усилителя X и подачи на его вход внешнего сигнала (положение 2 SA3).

При осциллографировании быстрых процессов изображение сигнала неяркое. Для того, чтобы обеспечить возможность его наблюдения и фотографирования, приходится форсировать режим работы трубки осциллографа. Для этого в осциллографе предусмотрено устройство управления лучом по яркости (вход позволяющее резко увеличить яркость луча при прямом ходе развертки и исключить возможность прожога экрана трубки во время отсутствия сигнала на входе осциллографа.

С целью улучшения метрологических характеристик осциллографа в него вводятся калибраторы амплитуды и длительности. Калибратор амплитуды представляет собой источник сигнала с известной амплитудой. Этот сигнал подаете на вход осциллографа (положение 2 SA4) или на пластины трубки и позволяет отградуировать в единицах напряжения канал Y осциллографа.

Калибратор меток времени представляет собой стабильный генератор электрических колебаний. Его сигнал подается на усилитель канала вертикального отклонения. Период повторения этого сигнала используется в качестве калибровочных интервалов времени; функции калибраторов могут быть совмещены в одном генераторе.

Что называется средством измерения в метрологии

Рисунок 4.3 – Структурная схема универсального осциллографа

В соответствии с ГОСТ 16263-70 «Метрология. Термины и определения»: метрология – это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Точность измерений характеризуется близостью их результатов к истинному значению измеряемой величины. Точность – величина, обратная погрешности (о ней речь пойдет ниже).

Измерительная техника – это практическая, прикладная область метрологии.

Измеряемыми величинами, с которыми имеет дело метрология, являются физические величины, т. е. величины, входящие в уравнения опытных наук (физика, химия и др.), занимающихся познанием мира эмпирическим (т. е. опытным) путем.

Метрология проникает во все науки и дисциплины, имеющие дело с измерениями, и является для них единой наукой.

Основные понятия, которыми оперирует метрология, следующие:

— единица физической величины;

— система единиц физических величин;

— размер единицы физической величины (передача размера единицы физической величины);

— средства измерений физической величины;

— образцовое средство измерений;

— рабочее средство измерений;

— измерение физической величины;

— метрологическое обеспечение и т. д.

Дадим определения некоторым основным понятиям:

Физическая величина – характеристика одного из свойств физического объекта (явления или процесса), общая в качественном отношений для многих физических объектов, но в количественном отношении индивидуальная для каждого объекта (т. е. значение физической величины может быть для одного объекта в определенное число раз больше или меньше, чем для другого). Например»: длина, время, сила электрического тока.

Единица физической величины – физическая величина фиксированного размера, которой условно присвоено числовое значение равное 1, и применяемое для количественного выражения однородных физических величин. Например: 1 м – единица длины, 1 с – времени, 1А – силы электрического тока.

Система единиц физических величин – совокупность основных и производных единиц физических величин, образованная в соответствии с принятыми принципами для заданной системы физических величин. Например: Международная система единиц (СИ), принятая в 1960 г.

Исторически первой системой единиц физических величин была принятая в 1791 г. Национальным собранием Франции метрическая система мер. Она не являлась еще системой единиц в современном понимании, а включала в себя единицы длин, площадей, объемов, вместимостей и веса, в основу которых были положены две единицы: метр и килограмм.

В дальнейшем с развитием науки и техники появился ряд систем единиц физических величин, построенных по принципу, предложенному Гауссом, базирующихся на метрической системе мер, но отличающихся друг от друга основными единицами.

Рассмотрим главнейшие системы единиц физических величин.

Система СГС. Система единиц физических величин СГС, в которой основными единицами являются сантиметр как единица длины, грамм как единица массы и секунда как единица времени, была установлена в 1881 г.

Система МКСА. Основы этой системы были предложены в 1901 г. итальянским ученым Джорджи. Основными единицами системы МКСА являются метр, килограмм, секунда и ампер.

Наличие ряда систем единиц физических величин, а также значительного числа внесистемных единиц, неудобства, связанные с пересчетом при переходе от одной системы единиц к другой, требовало унификации единиц измерений. Рост научно-технических и экономических связей между разными странами обусловливал необходимость такой унификации в международном масштабе.

Требовалась единая система единиц физических величин, практически удобная и охватывающая различные области измерений. При этом она должна была сохранить принцип когерентности (равенство единице коэффициента пропорциональности в уравнениях связи между физическими величинами).

В РФ система СИ регламентируется ГОСТом 8.417-81.

Размер единицы физической величины – количественная определенность единицы физической величины, воспроизводимой или хранимой средством измерений. Размер основных единиц СИ устанавливается определением этих единиц Генеральными конференциями по мерам и весам (ГКМВ). Так, в соответствии с решением XIII ГКМВ, единица термодинамической температуры, кельвин, установлена равной 1/273,16 части термодинамической температуры тройной точки воды.

Воспроизведение единиц осуществляется национальными метрологическими лабораториями при помощи национальных эталонов. Отличие размера единицы, воспроизводимой национальным эталоном от размера единицы по определению ГКМВ устанавливается при международных сличениях эталонов.

Размер единицы, хранимой образцовым (ОСИ) или рабочим (РСИ) средствами измерений, может быть установлен по отношению к национальному первичному эталону. При этом может быть несколько ступеней сравнения (через вторичные эталоны и ОСИ).

Измерение физической величины – совокупность операций по применению технического средства, хранящего единицу физической величины, заключающихся в сравнении (в явном или неявном виде) измеряемой величины с ее единицей с целью получения этой величины в форме, наиболее удобной для использования.

Принцип измерений – физическое явление или эффект, положенное в основу измерений тем или иным типом средств измерений.

— применение эффекта Доплера для измерения скорости;

— применение эффекта Холла для измерения индукции магнитного поля;

— использование силы тяжести при измерении массы взвешиванием.

По характеру зависимости измеряемой величины от времени измерения разделяются на:

статические, при которых измеряемая величина остается постоянной во времени;

динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.

По способу получения результатов измерений их разделяют на:

При прямых измерениях экспериментальным операциям подвергают измеряемую величину, которую сравнивают с мерой непосредственно или же с помощью измерительных приборов, градуированных в требуемых единицах. Примерами прямых служат измерения длины тела линейкой, массы при помощи весов и др.

Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.

Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат. Роль их особенно велика при измерении величин, недоступных непосредственному экспериментальному сравнению, например размеров астрономического или внутриатомного порядка.

Примером совокупных измерений является определение массы отдельных гирь набора (калибровка по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь).

В качестве примера можно назвать измерение электрического сопротивления при 200С и температурных коэффициентов измерительного резистора по данным прямых измерений его сопротивления при различных температурах.

Метод измерения – это способ экспериментального определения значения физической величины, т. е. совокупность используемых при измерениях физических явлений и средств измерений.

Метод непосредственной оценки заключается в определения значения физической величины по отсчетному устройству измерительного прибора прямого действия. Например – измерение напряжения вольтметром.

Этот метод является наиболее распространенным, но его точность зависит от точности измерительного прибора.

Метод сравнения с мерой – в этом случае измеряемая величина сравнивается с величиной, воспроизводимой мерой. Точность измерения может быть выше, чем точность непосредственной оценки.

Различают следующие разновидности метода сравнения с мерой:

Метод противопоставления, при котором измеряемая и воспроизводимая величина одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между величинами. Пример: измерение веса с помощью рычажных весов и набора гирь.

Дифференциальный метод, при котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой. При этом уравновешивание измеряемой величины известной производится не полностью. Пример: измерение напряжения постоянного тока с помощью дискретного делителя напряжения, источника образцового напряжения и вольтметра.

Нулевой метод, при котором результирующий эффект воздействия обеих величин на прибор сравнения доводят до нуля, что фиксируется высокочувствительным прибором – нуль-индикатором. Пример: измерение сопротивления резистора с помощью четырехплечевого моста, в котором падение напряжения на резисторе с неизвестным сопротивлением уравновешивается падением напряжения на резисторе известного сопротивления.

Метод замещения, при котором производится поочередное подключение на вход прибора измеряемой величины и известной величины, и по двум показаниям прибора оценивается значение измеряемой величины, а затем подбором известной величины добиваются, чтобы оба показания совпали. При этом методе может быть достигнута высокая точность измерений при высокой точности меры известной величины и высокой чувствительности прибора. Пример: точное точное измерение малого напряжения при помощи высокочувствительного гальванометра, к которому сначала подключают источник неизвестного напряжения и определяют отклонение указателя, а затем с помощью регулируемого источника известного напряжения добиваются того же отклонения указателя. При этом известное напряжение равно неизвестному.

Метод совпадения, при котором измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Пример: измерение частоты вращения детали с помощью мигающей лампы стробоскопа: наблюдая положение метки на вращающейся детали в моменты вспышек лампы, по известной частоте вспышек и смещению метки определяют частоту вращения детали.

Средство измерений – техническое средство (или их комплекс), предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимается неизменным в пределах установленной погрешности и в течение известного интервала времени.

По метрологическому назначению средства измерений подразделяются на:

— образцовые средства измерений, предназначенные для обеспечения единства измерений в стране.

— стандартизованные средства измерений, изготовленные в соответствии с требованиями государственного или отраслевого стандарта.

— нестандартизованные средства измерений – уникальные средства измерений, предназначенные для специальной измерительной задачи, в стандартизации требований к которому нет необходимости. Нестандартизованные средства измерений не подвергаются государственным испытаниям (поверкам), а подлежат метрологическим аттестациям.

По степени автоматизации – на:

— автоматические средства измерений, производящие в автоматическом режиме все операции, связанные с обработкой результатов измерений, их регистрацией, передачей данных или выработкой управляющего сигнала;

— автоматизированные средства измерений, производящие в автоматическом режиме одну или часть измерительных операций;

— неавтоматические средства измерений, не имеющие устройств для автоматического выполнения измерений и обработки их результатов (рулетка, теодолит и т. д.).

По конструктивному исполнению – на:

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера. Мера выступает в качестве носителя единицы физической величины и служит основой для измерений. Примеры мер: нормальный элемент – мера Э.Д.С. с номинальным напряжением 1В; кварцевый резонатор – мера частоты электрических колебаний.

Измерительный преобразователь – средство измерений для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному наблюдению человеком (оператором). Часто используют термин первичный измерительный преобразователь или датчик. Электрический датчик – это один или несколько измерительных преобразователей, объединенных в единую конструкцию и служащих для преобразования измеряемой неэлектрической величины в электрическую. Например: датчик давления, датчик температуры, датчик скорости и т. д.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия человеком (оператором).

Измерительная установка – совокупность функционально объединенных средств измерений, предназначенная для выработки сигналов измерительной информации в форме, удобной для непосредственного наблюдения человеком и расположенная в одном месте. Измерительная установка может включать в себя меры, измерительные приборы и преобразователей, а также различные вспомогательные устройства.

Метрологические характеристики средств измерений

Все средства измерений, независимо от их конкретного исполнения, обладают рядом общих свойств, необходимых для выполнения ими их функционального назначения. Технические характеристики, описывающие эти свойства и оказывающие влияние на результаты и на погрешности измерений, называются метрологическими характеристиками. Комплекс нормируемых метрологических характеристик устанавливается таким образом, чтобы с их помощью можно было оценить погрешность измерений, осуществляемых в известных рабочих условиях эксплуатации посредством отдельных средств измерений или совокупности средств измерений, например автоматических измерительных систем.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *